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Abstract

We propose a method to identify the anticipated components of macroeconomic

shocks in a structural VAR. We include empirical forecasts about each time series in

the VAR. This introduces enough linear restrictions to identify every structural shock

and to further decompose each one into “news” and “surprise” shocks. We estimate a

VAR on U.S. time series using forecast data from the SPF, CBO, Federal Reserve, and

asset prices. Unanticipated fiscal stimulus and monetary policy shocks have typical

effects that match existing evidence. In our news-surprise decomposition, we find that

news drives around one quarter of U.S. business cycle volatility. News explains a larger

share of the variance due to fiscal shocks than for monetary policy shocks. Finally,

we use the news structure of the shocks to estimate counterfactual policy rules, and

compare the ability of fiscal and monetary policy to moderate output and inflation.

We find that coordinated fiscal and monetary policy are substantially more effective

than either individually.
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1 Introduction

Anticipated and unanticipated changes to macroeconomic forces can have different effects.

Current methods focus on understanding these differences for a subset of macroeconomic

shocks – typically, one shock at a time. In this paper we extend this line of thinking, con-

sidering an environment where all shocks have anticipated and unanticipated components,

and introduce a general method to identify them.

Our strategy is to include data on forecasts about the macroeconomic time series in a

vector autoregression (VAR). Forecasts are valuable because they reveal information about

the future that is not otherwise revealed by the macroeconomic time series alone. We modify

a standard structural VAR driven by a series of structural shocks, by assuming that each

shock has an anticipated component – the “news” – and an unanticipated component –

the “surprise”. This data generating process is consistent with a large class of standard

macroeconomic models. We identify shocks from cross-equation restrictions which impose

consistency of the forecasts with the VAR’s predictions. We prove that under relatively

weak conditions, adding a forecast about each time series in the VAR identifies the news and

surprise components of every structural shock.

Our method is not only useful for isolating news from surprise: it is a method to identify

structural shocks themselves. Structural VARs typically assume that shocks are mutually

orthogonal in order to identify them from reduced form innovations in the observed time

series. If their news and surprise components are also mutually orthogonal, then our method

identifies the entire set of structural shocks, including their news and surprise components.

Thus our method is an alternative to the large variety of other strategies for identifying the

full set of structural shocks in VARs.1

We apply our method by estimating a VAR on U.S. time series. We take data on fore-

casts from the Survey of Professional Forecasters (SPF), the Federal Reserve’s Greenbook

forecasts, and also construct some expectations from asset prices. In our VAR, we estimate a

variety of structural shocks that resemble well-understood objects, including shocks to fiscal

and monetary policy. Our estimated shocks have realistic unanticipated effects, including

fiscal multipliers that match other estimates in the literature, quantitatively realistic effects

1A classic approach is to make assumptions about the causal ordering of shocks within a period, and
apply a Cholesky decomposition to the variance matrix (Sims, 1980). Other linear restrictions can identify
the structural shocks by making assumptions about long-run effects (Shapiro and Watson, 1988), restrictions
on the signs of shocks (Uhlig, 2005) or outside evidence on the magnitude of short-run effects (Blanchard and
Perotti, 2002). Recently, attention has been focused on identifying the set of structural shocks using higher
order moments and heteroskedasticity. Examples with dynamic heteroskedasticity include Sentana and
Fiorentini (2001), Rigobon (2003), Lanne et al. (2010), and Lewis (2021). Lütkepohl and Netšunajev (2017)
reviews this literature further. Other papers lean on non-Gaussianity more generally including Hyvärinen et
al. (2010) and Gouriéroux et al. (2017).
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of monetary policy shocks that resemble those implied by high-frequency-identified instru-

ments. Crucially, we can decompose each shock into the news and surprise components.

For example, we find that the effects of fiscal shocks on output are relatively anticipated,

and the news component implies a larger government spending multiplier than the surprise

component, echoing the findings in Ramey (2011). In contrast, the effects of monetary policy

shocks are mostly surprises.

By identifying the news and surprise components of all shocks, we can compute a variance

decomposition which allows us to make general statements about the role of anticipated

and unanticipated shocks in macroeconomic fluctuations. We find a modest role for news in

explaining business cycles: one quarter of output volatility is due to news shocks. This echoes

the findings of a large literature studying the relevance of news shocks for the macroeconomy.

Many of these papers focus on news about technology2 but we join a sizeable group studying

news about policy shocks, discussed below. This is more challenging, because policies are

endogenous, preventing the application of standard VAR methods developed by Barsky and

Sims (2011), Kurmann and Sims (2021) or Chahrour and Jurado (2022) to identify news

about exogenous processes. Indeed, many papers follow a conceptually similar approach to

ours by including a forecast in their VAR to isolate surprises or news about the forecasted

variable.3 However, including a single forecast identifies a specific news shock only if there

is a single structural shock that is anticipated. Otherwise, what might appear to be news

about a shock such as fiscal policy also includes news about shocks to supply, demand, and

so forth.4 This is the main advantage of our approach relative to existing VAR studies of

news: by including forecasts about every time series, we can distinguish the effects of news

to different structural shocks in a single framework. And we find that conflation of news

about multiple shocks is a nontrivial concern, as the news component of nearly all shocks is

relevant for at least one time series.

2Examples include Beaudry and Portier (2006), Barsky and Sims (2012), Schmitt-Grohé and Uribe (2012),
Blanchard et al. (2013), Ben Zeev and Khan (2015), Chahrour and Jurado (2022), and Kilian et al. (2024).
The most closely related papers are those that utilize forecast data to identify news about technology:
Miyamoto and Nguyen (2020) and Hirose and Kurozumi (2021) include forecast data in New Keynesian
DSGE models to identify news shocks and estimate that technology news drives a large share of business cycle
volatility; Cascaldi-Garcia (2022) uses forecast revisions of economic growth to instrument for technology
news shocks, which drive 11%− 26% of output volatility depending on the horizon.

3Papers including forecasts to identify fiscal surprises include Ramey (2011), Auerbach and Gorodnichenko
(2012), and Born et al. (2013). VAR methods using forecasts and additional structural assumptions to
identify fiscal news include Caggiano et al. (2015), Ricco (2015), Ricco et al. (2016) and Forni and Gambetti
(2016).

4For example, Acosta (2023) uses textual analysis to show that monetary policy “shocks” include news
about future interest rates as well as news about future demand and supply factors. Milani and Rajbhandari
(2020) study a DSGE model with news shocks to all exogenous states; they find that the news shocks are not
well identified from one another when using realizations alone, but including forecasts tightens the Bayesian
posteriors on the model parameters, particularly those related to the news processes.
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A valuable benefit of decomposing shocks into news and surprise is the ability to estimate

the effects of counterfactual policies. McKay and Wolf (2023) demonstrate that, under some

assumptions, impulse response functions to news about shocks at different horizons are

sufficient to construct counterfactual impulse response functions under alternative policy

rules. We implement their approach using our identification of impulse responses to news

and surprise shocks and conduct several counterfactual experiments.

Crucially, our method’s ability to recover news about multiple shocks allows us to study

counterfactual fiscal and monetary policy in a single exercise. This allows us to estimate how

monetary and fiscal policy can coordinate to achieve policy objectives. We find that fiscal

policy can be effective at stabilizing output over the business cycle, but the effectiveness

varies depending on the cause of output fluctuations. And current fiscal policy is already

somewhat stabilizing; when we consider a counterfactual with fixed government spending,

real activity and inflation are both more volatile. We come to similar conclusions as Wolf and

McKay when considering counterfactual monetary policy, including that interest rate pegs

do not lead to more volatile inflation but cause output to be more elastic to shocks in the

short run. The best counterfactual monetary policy rules that we can construct are less able

to stabilize output than fiscal stimulus, but more able to stabilize inflation. Fortunately,

the shocks that fiscal policy is not effective at moderating, are precisely the shocks that

monetary policy is more effective at responding to, suggesting a role for fiscal and monetary

coordination. Working together, fiscal and monetary policy can almost entirely eliminate

output volatility.

Other related literature: We contribute to a large literature studying the effects of

news about policy. Antoĺın-Dı́az et al. (2021) include SPF interest rate forecasts in an

SVAR and use narrative sign restrictions to separately identify monetary policy news shocks

from surprise shocks. With regard to fiscal policy, Ramey (2011) uses narrative methods

to identify changes in current and future government spending driven by military events,

and argues the many fiscal shocks identified by structural VARs are actually anticipated.

Fisher and Peters (2010) use financial returns to defense contractors to identify shocks that

include news about future defense spending. Ben Zeev and Pappa (2017) apply the Barsky

and Sims (2012) methodology to identify the shock dimension that contains the most news

about government defense spending over a 5-year horizon. In addition, a number of papers

use some measure of forecast updates from professional forecasters to derive measures of

fiscal news, including Ricco (2015), Ricco et al. (2016), Cimadomo et al. (2016), and End

and Hong (2022). A common theme in these papers is that the fiscal multiplier due to news

about government spending is large.

The revenue side of fiscal policy has received a similar treatment. Leeper et al. (2009)
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argue VAR-based estimates of shocks will be misleading when tax changes are anticipated.

Romer and Romer (2010) use a narrative approach to construct a series of anticipated tax

changes, and estimate that legislation of relatively exogenous tax increases have large con-

tractionary effects. Mertens and Ravn (2012) decompose the Romer-Romer series into antic-

ipated and unanticipated components, and show that they have opposite effects on output in

the short run. House and Shapiro (2006) come to a similar conclusion studying tax reforms

in the early 2000s. Ramey (2019) surveys additional evidence.

2 A Simple Example: Monetary Policy News

We introduce our identification strategy in a simple example, before exploring the general

case. The example allows for news about monetary policy, shows how the presence of news

confounds the estimation of monetary policy shocks in a standard VAR, and how including

forecasts in the VAR correctly identifies the shocks and their effects.

2.1 The New Keynesian Model with Monetary Policy News

Consider the following three-equation New Keynesian model:

New Keynesian Phillips curve: πt = βEt[πt+1] + κyt + xt

Euler equation: 0 = Et[zt + γ(yt − yt+1) + it − πt+1]

Taylor rule: it = ϕππt + ht

where πt, yt, and it are inflation, the output gap, and the nominal interest rate respective,

xt is an i.i.d. cost-push shock, zt is an i.i.d. demand shock. The crucial part of this example

is the introduction of a shock with separate news and surprise components. The persistent

policy residual ht, is given by

ht = ρht−1 + ut + vt−1

where the policy innovation ut + vt−1 has two components. One is an i.i.d. surprise, ut,

wholly unanticipated at time t. The other is i.i.d. news shock, vt−1, known in period t− 1.

These different components capture the fact that monetary policy changes are often

signalled in advance. For example, if a monetary policymaker communicated in period t− 1

that in period t they would depart from their usual policy rule by increasing interest rates

by 25 basis points, then vt−1 = 0.25. If in period t they then actually departed from their

usual policy rule by 50 basis points, then ut = 0.25 as well, for a total policy shock of

ut + vt−1 = 0.5. Because the news shock vt−1 is in the t− 1 information set, this framework
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allows for an anticipation effect at time t− 1 for pre-announced policy decisions.

The solution to this model can be written in the following form:

πt = bπhht + bπvvt + bπxxt + bπz zt

yt = byhht + byvvt + byxxt + byzzt

it = bihht + bivvt + bixxt + bizzt

The corresponding impulse responses to news and surprise shocks to the policy rule are

shown in Figure 1 for a standard calibration. Qualitatively, they have very different effects

on impact. News of an interest rate rise tomorrow means that agents anticipate a recession in

the next period. Because of consumption smoothing, they reduce spending today, lowering

output and prices. The central bank responds to this through their Taylor rule, cutting

interest rates to mitigate the downturn.

(a) Interest Rate IRFs (b) Output IRFs (c) Inflation IRFs

Figure 1: Impulse Response Functions in the Simple Example

Figure 1 shows impulse responses to news and surprise shocks to monetary policy in the simple New Keynesian
model, as well as the IRFs from a VAR estimated without forecasts (“Naive VAR”). Model parameters are
set to standard values for a monthly calibration, largely adapting the quarterly calibration from Gaĺı (2008):
β = 0.997, κ = 0.2, γ = 1, and ϕπ = 1.5. However, we choose a lower persistence ρ = 0.6 than Gali, and set
all shock variances to one.

2.2 Identifying Shocks in the Simple Example

As we have seen, the impact of news and surprise shocks are quite different. Can an econo-

metrician identify them from data on (πt, yt, it)?

In general, no: there are four structural shocks (ut, vt, xt, zt) but only three time series.

Since the effects of the four shocks are linearly independent, this is not enough information,

even if the structural coefficients are known exactly. Model agents, however, do have enough

information; they know all the shocks in the model. Of course, it is not reasonable to assume
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that the econometrician can interrogate agents directly about the shocks – that assumes away

the problem entirely. A more realistic assumption is that agents make public forecasts about

the endogenous variables.

By including agents’ forecasts in the VAR we can identify all of the structural shocks,

given that we know the model that generated the time series. In this simple example,

including a single forecast is sufficient, so consider the inflation forecast fπ
t ≡ Et[πt+1]:

fπ
t = bπh(ρht + vt)

Now, the four time series (fπ
t , πt, yt, it) can identify the structural shocks. ht is found by

ht = it − ϕπt

Using the forecast, the policy news shock vt is identified by

vt =
fπ
t

bπh
− ρht

which identifies the policy surprise shock ut by

ut = ht − ρht−1 − vt−1

The remaining shocks can be identified by(
xt

zt

)
=

(
bπxxt bπz zt

byx byz

)−1(
πt − bπhht − bπvvt

yt − byhht − byvvt

)

except in non-invertible edge cases where demand and cost-push shocks have colinear effects

on output and inflation.

What if the econometrician in our simple example did not properly account for news and

surprises separately? The “Naive VAR” (solid blue curves) plot the IRFs implied by a SVAR

without forecasts; the curves are responses to forecast errors in the policy residual ht, which

can be calculated by the appropriate causal ordering (Sims, 1980). This would consistently

identify the effects of a monetary policy surprise ut in the absence of any news. But when

news shocks vt−1 affect monetary policy, this method fails. The Naive VAR identifies neither,

returning instead a linear combination of current and past shocks.

In this simple structural example, one need include only forecasted inflation to allow for

news and surprises to be separately identified. But identification is more complicated in a

general VAR, for which it is not known ex ante how to map forecast errors back into structural
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shocks, and where there may be more than one news shock. Nevertheless, the lessons from the

simple example generalize: including rational forecasts is enough for identification without

any additional structure.5

3 Identification

This section outlines the general structural VAR, provides a constructive proof of identifica-

tion, describes how rational forecasts are cleaned from empirical forecasts, and derives the

implied impulse response functions.

3.1 The Basic Statistical Model

As is common, we consider an n−dimensional time series of macroeconomic data xt is gener-

ated by n causal, economically-meaningful “structural” shocks, denoted ϵt. We depart from

standard time series methods in allowing the structural shocks to be partially anticipated in

ways not directly observable to the econometrician. The shock ϵt has a surprise component

ut and a news component vt−1 that is anticipated one period in advance:

ϵt = ut + vt−1

We assume the components are orthogonal so that news does not predict surprises: ut ⊥ vt−1.

Thus vt−1 is the one-period ahead conditional expectation of ϵt, Et−1ϵt = vt−1.

Analogous to the standard SVAR assumption that each entry in the shock vector is

mutually orthogonal, we further assume that the entries in the surprise and news components

are mutually orthogonal. That is, V ar(ut) = D2
u and V ar(vt−1) = D2

v where Du and Dv are

diagonal matrices.6

We assume a dynamic functional form for the data generating process which maps infor-

5This intuition is similar to that underpinning Leeper et al. (2013), who show that a fiscal model with
news shocks about future taxes generates observable data which dos not identify the true shocks. This
is closely related to the issue we discuss here. Indeed, Leeper et al.’s Figure 1 is the direct analogue of
our Figure 1, showing how even in a simple model a naive econometric approach will confound news and
surprises. Leeper et al. also emphasize that the crux of this identification problem is that agents have an
information set different from the econometrician. And, much as in our case, the resolution to this problem is
to extend the information set of the econometrician so that is spans that of model agents. Our contribution
is to show that forecasts are enough to do this under some assumptions.

6Alternatively, this property is implied by assuming that the structural shocks are not just uncorrelated,
but independent.
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mation about the structural shocks into xt:

xt =
m∑
j=1

Bjxt−j + Aϵt + Cvt (1)

Where the Bj, A and C are n×n matrices. Without loss of generality we can normalize the

structural shocks to unit variance:

V ar(ϵt) = D2
u +D2

v = I (2)

Equation (1) is the data generating process we study in this paper. Without news it would

be a standard SVAR, which we have modified so that observables may be affected by news

vt about future shocks. The matrices A and C measure respectively the contemporaneous

response of xt to unanticipated and anticipated shocks. In general, one cannot recover the

macroeconomic shocks from the time series of xt alone, because there are 2n shocks but only

n observables in every period.7 In Section 3.3, we show that extending the data to include

forecasts resolves this problem. Before that, we show in the next Section that equation (1) is

a relevant model, in that it describes the equilibrium time series in a large class of standard

macroeconomic models with news.

3.2 Theoretical Motivation for the Statistical Model

When should we expect time series governed by a dynamic economic model to obey the

structure that we assume in equation (1)? The model must satisfy a key condition: the

model must have an inclusive form. Here, we explain what this means.

Consider a general linear model of the following form:8

0 = Et [Ψx,1xt+1] +
k∑

j=0

Ψx,−jxt−j +Ψy,0yt + Et [Ψy,1yt+1] (3)

where xt is a vector of endogenous variables and yt is a vector of stochastic exogenous

variables. The time subscript denotes the time that the variables in the vector xt are chosen,

in order to avoid treating state and control variables separately.9 We assume yt is a VAR(1)

7Thus the time series xt is neither invertible (in the language of Hansen and Sargent (1980) or Fernández-
Villaverde et al. (2007)) nor fundamental (as defined in Lippi and Reichlin (1993)).

8Uhlig (1995) studies this general form in detail. This form nests a large class of popular macroeconomic
models.

9The same convention is followed when current-period capital stock is written kt−1.
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following

yt = Ryyt−1 +Kyϵt

with all eigenvalues of Ry inside the unit circle, and ϵt a vector of i.i.d. standard normal

random variables. The shock ϵt has an anticipated news component, so that entry i satisfies

ϵit = uit + vit−1

with uit ∼ N(0, σ2
i,u), v

i
t−1 ∼ N(0, σ2

i,v), u
i
t ⊥ vit−1, and σ

2
i,u + σ2

i,v = 1.

We say that a model can be written in inclusive form if it has a representation satisfying

equation (3) with Ry = 0. This form implies that any exogenous state variables driving the

exogenous process yt either appear directly in xt, or can be expressed as a linear combination

of entries in xt and its lags.10 This recasting of exogenous state variables as endogenous

state variables is standard, and a large class of standard macroeconomic models satisfy

inclusivity. However, there are some models which do not satisfy this requirement. Perhaps

most obviously, models with latent states or other cases where not all of xt is observed by

the econometrician.

We assume that the Blanchard and Kahn (1980) conditions hold so that the model has

a unique solution, and can be rewritten in the following way:

0 = Et

[
Φ0

(
I − ΞL−1

)(
I −

k∑
j=1

ΦjL
j

)
xt +Ψy,0yt +Ψy,1yt+1

]
(4)

such that Φ0 is invertible, and the Ξ and Φj matrices have all eigenvalues inside the unit

circle.11 With these assumptions, we prove the following Theorem:

Theorem 1 If the model can be written in inclusive form, then the implied time series xt

follows the form (1)

Proof: Appendix A

Theorem 1 implies that many models have equilibrium time series satisfying our assumed

structure. The crucial condition is that the model can be written in inclusive form. When this

is not satisfied, estimation is more challenging and our main identification result, Theorem

2, does not apply. Still, identification may be possible; Appendix J describes how.

10For example, in the model studied in Section 2, interest rates follow a Taylor Rule it = ϕπt+ht where ht

is an AR(1) exogenous state variable; but ht is linear in observables, so including the lags πt−1 and it−1 in xt

allows the model to be written in inclusive form without including ht−1 directly. Likewise, in the canonical
RBC model (Kydland and Prescott, 1982) productivity is an exogenous state variable, but can written as a
linear combination of output and inputs.

11In this form, the eigenvalues of Ξ are either zeros or the inverses of the standard “explosive” eigenvalues
in the Blanchard and Kahn (1980) condition.
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3.3 A VAR with Forecasts

Assume in addition to xt, we also observe ft, a vector of rational expectations for the corre-

sponding time series:

ft = E
[
xt+1|{xt−j}m−1

j=0 , ϵt, vt
]

(5)

The expectation is conditional on current news vt, so the vector ft contains information that

may not be directly observable to the econometrician.

Because ft is the rational expectation, there exist restrictions on the relationship between

ft and xt that are sufficient to identify all of the structural shocks. Equation (1) implies that

ft follows

ft =
m∑
j=1

Bjxt+1−j + Avt (6)

because E
[
ϵt+1|{xt−j}m−1

j=0 , ϵt, vt
]
= vt and E

[
vt+1|{xt−j}m−1

j=0 , ϵt, vt
]
= 0.

The time series xt can be written recursively in terms of current surprises ut and current

news vt using the dynamic structure (1) and the rational expectation (6):

xt =
m∑
j=1

Bjxt−j + A(ut + vt−1) + Cvt

=
m∑
j=1

Bjxt−j + (ft−1 −
m∑
j=1

Bjxt−j) + Aut + Cvt

= ft−1 + Aut + Cvt

The expectations ft can similarly be written

ft = B1xt +
m∑
j=2

Bjxt+1−j + Avt

= B1(ft−1 + Aut + Cvt) +
m∑
j=2

Bjxt+1−j + Avt

Stack the expectations and time series into a single VAR(m− 1):(
ft

xt

)
=

m−1∑
j=1

Bj

(
ft−j

xt−j

)
+A

(
vt

ut

)
(7)
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where

Bj ≡



 B1 B2

I 0

 j = 1 0 Bj+1

0 0

 j > 1

and

A ≡

(
B1C + A B1A

C A

)
Estimating the VAR (7) recovers the coefficients {Bj}mj=1 and the variance matrix of

forecast errors Σ, which satisfies

Σ = A

(
D2

v 0

0 D2
u

)
A′

The symmetric matrix Σ has 2n2+n unique entries. B1 is identified from the VAR, while A

and C each have n2 unknown parameters. D2
u and D2

v each have n unknowns, but equation

(2) implies n additional restrictions, enough to exactly identify the unknown parameters.

3.4 Deriving the Estimator

In this section, we introduce and prove the main identification theorem. The proof is con-

structive, describing how to estimate the unknown matrices given estimates from the reduced

form VAR of the first coefficient matrix B1 and the residual covariance matrix Σ.

The model must satisfy three key assumptions. First, A must be invertible: this implies

that the shocks in ϵt have linearly independent effects on the time series. Second, D2
v must be

invertible: each shock must have a nontrivial news component. However, we do not require

that D2
u is invertible, i.e. some shocks can be fully anticipated. Third, D2

v must have distinct

diagonal entries, while A must have distinct singular values. This assumption rules out edge

cases where applications of the singular value decomposition are not sufficiently unique.

Theorem 2 If A and D2
v are full rank, and neither A nor D2

v have repeated singular values,

then C, D2
u and D2

v are determined (up to sign and column order) by Σ and B1.

Proof. Subdivide the matrix Σ =

(
Σ11 Σ12

Σ21 Σ22

)
into n × n blocks. The off-diagonal

submatrices satisfy Σ12 = Σ′
21, so the three remaining submatrices are given by
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(
Σ11

Σ21 Σ22

)
=

(
(B1C + A)D2

v(B1C + A)′ +B1AD
2
uA

′B′
1

CD2
v(B1C + A)′ + AD2

uA
′B′

1 CD2
vC

′ + AD2
uA

′

)

Define the n× n matrices Θ and Γ by

Θ ≡ Σ11 −B1Σ21 − Σ′
21B

′
1 +B1Σ22B

′
1

= AD2
vA

′

Γ ≡ Σ22 − (Σ21 − Σ22B
′
1)Θ

−1(Σ21 − Σ22B
′
1)

′

= CD2
vC

′ + AD2
uA

′ − CD2
vA

′(AD2
vA

′)−1AD2
vC

′

= AD2
uA

′

Equation (2) implies

Θ + Γ = AA′

The singular value decomposition (SVD) of Θ + Γ gives unitary matrix U and diagonal

matrix Λ2 such that

Θ + Γ = UΛ2U ′

and

A = UΛV ′

for some unitary V . A has no repeated nor zero singular values, so U is uniquely determined

up to column sign and order from the SVD of Θ + Γ.

The SVD of Λ−1U ′ΘUΛ−1 gives the matrices V and D2
v from

Λ−1U ′ΘUΛ−1 = V ′D2
vV

D2
v has no repeated nor zero singular values, so V is found uniquely up to column sign and

order from this SVD. This gives the matrices A = UΛV ′ and D2
u = I −D2

v. Then the final

matrix C is found from

C = (Σ21 − Σ22B
′
1)(D

2
vA

′)−1

The application of the singular value decomposition makes it clear that the shocks are

only identified up to sign and column order; the distinctness assumptions only ensure that

the SVD is unique up to reordering of the singular values, and resigning the columns of their
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coefficient matrices. Choosing an order for the singular values implies an ordering of the

shocks in ϵt. Moreover, our method only determines the variances of the shocks D2
u and D2

v,

so the shock signs are also indeterminate.

3.5 Forecast Cleaning

In practice, empirical forecasts f̃t may not correspond to the rational expectation (6). For

example, there is extensive evidence that surveyed expectations feature predictable biases,

which can arise if agents have behavioral expectations or incomplete information.12 Therefore

it is necessary to “clean” any empirical forecasts in order to transform them into rational

expectations.13 For this, the cleaned forecast’s errors must be orthogonal to m lags of the

time series xt, of the empirical forecasts f̃t, and any other data zt in the information set.

To construct the rational expectation ft, we run the VAR(k) with k ≥ m: f̃t

zt

xt

 =
k∑

j=1

Gj

 f̃t−j

zt−j

xt−j

+ ωt

where ωt is a reduced form error.

Let Gx,j denote the final n rows of Gj. The cleaned rational forecast ft is given by

ft =
k∑

j=1

Gx,j

 f̃t+1−j

zt+1−j

xt+1−j

 (8)

which is the best linear forecast of xt+1 conditional on the information set spanned by lags

of measured forecasts f̃t, the time series xt, and other regressors zt.

Under some assumptions, this cleaning procedure recovers the true rational expectation.

We model empirical forecasts f̃t as linear deviations from the rational forecast ft. The

deviations may depend on lags of the rational forecast ft, the time series xt, observable

confounders zt, fundamental surprises ut, or fundamental news vt:

f̃t =
k∑

j=0

(
Hf

j ft−j +Hx
j xt−j +Hz

j zt−j +Hu
j ut−j +Hv

j vt−j

)
12Notable examples include Souleles (2004), Greenwood and Shleifer (2014) Coibion and Gorodnichenko

(2015), and Bordalo et al. (2020), among many others.
13This cleaning process removes the variation exploited in Adams and Barrett (2024), where we also

include forecasts in a VAR but use innovations in the component that deviates from rational expectations
to identify shocks to belief distortions.
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or in terms of lag operator polynomials

f̃t = Hf (L)ft +Hx(L)xt +Hz(L)zt +Hu(L)ut +Hv(L)vt (9)

Theorem 3 If Hf (L) is causally invertible, then the rational forecast ft is given by equation

(8).

Proof: Appendix B.1

This approach makes two strong assumptions: the additional confounding terms zt are

all observable, and Hf (L) is invertible. In particular, if aggregate forecasts reflect publicly

available information, the observability assumption is a reasonable one. But – as with any

regression – it will be essential to include all of the relevant controls in the forecast cleaning.

What if the assumptions are broken, so that forecasts are affected by some unobserved

confounders beyond zt? In these cases we can still clean the forecast and identify shocks

under looser assumptions. But the interpretation of a news shock changes. Appendix B.2

considers this case.

3.6 Impulse Response Functions in the Presence of News

This section describes the impulse response functions implied by the structural VAR.

The horizon h impulse response ϕu(h) to a surprise ut is standard:

ϕu(h) =

A h = 0∑min(m,h)
j=1 Bhϕu(h− j) h > 0

ϕu(h) is a matrix, so that the entry in row i and column j captures the horizon h response

of time series i to shock j.

The impulse responses to news have an additional term, because the news shock vt−1

first affects the period t− 1 time series through the news channel, and then again in period

t when the full shock is realized. The corresponding impulse response matrix is:

ϕv(h) =


C h = 0

B1C + A h = 1∑min(m,h)
j=1 Bhϕv(h− j) h > 1

The impulse response functions are related to conditional expectations by:

E[xt+h|ut] = ϕu(h)ut E[xt+h|vt] = ϕv(h)vt
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3.7 Generalizations and Alternatives

Our main approach applies to a broad class of dynamic models. But it still includes some

restrictions that can be further relaxed.

Thus far, we have assumed that news occurs one period in advance. But news might

realistically have longer horizons. For example, Mertens and Ravn (2012) estimate the

effects of tax changes with announcements measured up to 16 quarters in advance of the

policy change. It is possible to account for additional news horizons by incorporating data

on additional forecasts. Appendix H describes how to estimate the effects of surprises and

news shocks in this case. The reason that we do not implement this here is principally one

of data availability. Identifying news shocks occurs at H different horizons requires forecasts

at each additional horizon. For many macroeconomic variable, forecasts at multiple horizons

beyond a year in advance do not typically exist, although for some other applications (e.g.

interest rates and inflation) this constraint may not be as binding.

Appendix H also shows that the variance decomposition is robust to misspecification of

news horizons. Specifically, if the true data generating model has news about outcomes H

periods ahead but one fits a model of news shocks up to horizon H ′ < H, then the variance

decomposition will be correct at all horizons h < H ′. In our single horizon baseline, this

means that the decomposition correctly identifies the variance of observables due to surprises

and the effects of news about all future horizons are loaded onto the one-period news shock.

Practitioners might also be concerned that forecasts reported in survey data include

measurement error. Appendix I details a procedure that accounts for the presence of mea-

surement error in the forecasts and still allows news and surprise shocks to be identified.

The necessary assumptions are that the measurement error is classical and that absent the

measurement error, forecasters would report their rational expectation. This latter assump-

tion is crucial, because the cost of this procedure is that we cannot simultaneously correct

for measurement error and apply our forecast cleaning approach. Thus the practitioner must

decide whether measurement error or non-rationality is a greater concern for their forecast

data. In our application, we chose the latter.

We have also assumed thus far that the econometrician has data on all relevant state

variables in the economy. That is, they observe the entire vector xt and the associated fore-

casts in the structural equation (1). But what if a critical time series is missing from the

data? Appendix J derives the appropriate SVAR restrictions when some state variables are

unobserved. News and noise shocks may still be identified, but the problem is computation-

ally more intensive; we do not have an analytical solution for the implied decomposition of

the variance matrix Σ.
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4 Application to U.S. Data

We apply our structural VAR method to data on U.S. time series. We identify clear fiscal

shocks and monetary policy shocks, estimate the implied multipliers, and study the general

effects of news versus surprises.

4.1 Data

Our main source of forecast data is the Survey of Professional Forecasters (SPF), which

is currently run by the Federal Reserve Bank of Philadelphia. The survey is administered

quarterly to roughly 40 anonymous forecasters since 1968. We take the median reported

values as our measure of forecasts.

Some variables are not available in the SPF for the entire sample, so we turn to other

sources. In particular, the SPF only collects estimates on real government consumption and

investment since 1981:III, so before this period we draw from the Federal Reserve’s official

forecasts reported in the Greenbook for every FOMC meeting. These values are not collected

in publicly available datasets for all periods, so when necessary, we transcribe them from the

original Greenbooks. For each quarter, we take the most recent estimate. We also use the

Greenbook forecasts for federal budget receipts and surpluses. For these variables, we use

the dataset collected by Croushore and van Norden (2018), which we extend to 2016:IV by

transcribing from the most recently released Greenbooks.

For interest rates, we measure forecasts directly from the yield curve. We use this measure

because the SPF only provides forecasts for a limited number of interest rate horizons, and

only since 1981:III. Where rht denotes the return from time t to t+h, we calculate the forecast

E[rht+1] by

E[rht+1] = rh+1
t − r1t

This is known to be a biased forecast, as the yield curve incorporates liquidity and risk premia

as well as expectations. Yet while the yield curve-implied forecasts do not exactly match

the SPF forecasts, they track each other very closely; for 3-month T-bills, the correlation

coefficient is 0.996.

Finally, we use 3-month-ahead futures contracts to measure forecasts for oil prices and

exchange rates. Covered interest rate parity predicts that the implied forecasted growth rates

should track 3-month interest rates closely, but not exactly; deviations depend on expected

costs of holding oil or interest rate differences across countries, respectively.

Table 1 reports the time series that we use. We transform the variables in three different

ways. For NIPA variables and federal budget variables, we follow Ramey (2016) and divide by
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an estimated quadratic time trend in real GDP. This transformation allows fiscal multipliers

to be read directly from the impulse response functions. For the price level as measured by

the GDP deflator, we take log differences and annualize to calculate the inflation rate. For

other variables that grow regularly (e.g. housing starts), we take logs, but we leave in levels

those variables that are not clearly nonstationary (unemployment, interest and exchange

rates). Finally, we remove a quadratic trend and linear seasonal factors from all variables.

Variable Date range Source for Empirical Forecast, f̃t

Baseline Specification
Real GDP 1968:IV - 2022:II SPF
Federal tax receipts 1968:IV - 2016:IV Fed Greenbooks
Real government spending 1968:IV - 2022:II Fed Greenbooks for 1968:IV - 1981:II

SPF for 1981:III - 2022:II
GDP deflator 1968:IV - 2022:II SPF
3-month Treasury rate 1968:IV - 2022:II Yield curve
Housing starts 1968:IV - 2022:II SPF

Additional Variables
Unemployment Rate 1968:IV - 2022:II SPF
Industrial production 1968:IV - 2022:II SPF
Federal budget surpluses 1968:IV - 2016:IV Fed Greenbooks
USD/CAD exchange rate 1968:IV - 2022:II Futures contracts
Real oil price 1983:I - 2022:II Futures contracts
1, 2, 3, 4, and 5-year Treasury rates 1968:IV - 2022:II Yield curve

Table 1: List of Variables

Our baselines specification appears above the break in Table 1. We include output,

government spending, taxes, short term interest rates, and inflation so that we might identify

shocks that reflect fiscal and monetary policy, which have well-understood effects on these

variables. We also include housing starts as a second measure of real activity; housing starts

have SPF forecasts that cover our entire sample, and aggregate forward-looking decisions that

may be informative about news. The additional variables are used in the forecast cleaning

step, as well as in the alternative VAR specifications that we consider in the Robustness

Appendix K.

The data sources in Table 1 give us the empirical forecasts f̃t, which we “clean” to give the

rational forecast ft. In constructing the forecast series ft we aim to satisfy three objectives.

The first objective is plausibility: that our forecasts plausibly reflect all information about

outcomes xt+1 at time t. The second objective is that we do not overfit to the data. The

third is the forecasts must satisfy the identifying assumption: that forecasts contain all the
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information already available to the VAR structure, formalized in equation (5).

To meet these objectives we proceed in in two steps, based on the methodology in Section

3.5. We start by constructing a vector of variables zt which aims to include as much as

possible of the information available at time t about relevant future outcomes. To do this

without overfitting, we a construct three machine learning models separately for each of

the six variables in the baseline VAR: an elastic net, a regression tree, and a simple linear

projection. Each model predicts one-period-ahead outcomes using up to eight lags of both

data and outcomes for all 16 variables in Table 1, some 256 possible predictors. We use

rolling cross-validation to select tuning parameters and then pick the model with the lowest

out-of-sample average RMSE individually for each of the six variables. The fitted predictions

thus embody plausible forecasts of xt robust to overfitting. These, we label zt. And so the

N entries of zt are the machine learning predictions for each of the elements of xt+1. We

then include these zt in the cleaning process described in 3.5.

The advantage of this approach is that if there is a variable not in the VAR specifica-

tion that contains reliable information about future outcomes, this will be included in the

constructed forecast ft. For example, if lagged oil prices – a variable not in our baseline

VAR – happen to be a robust predictor of inflation, then the machine learning models will

include them. And so the relevant entry of zt will contain the component of inflation that

can be explained by oil prices. If this information is supplementary to the information in

the lags of the data and the empirical forecasts, (xt, . . . , xt−m, f̃t, . . . , f̃t−m), then the cleaned

forecast ft will put weight on it. Likewise, if the empirical forecasts f̃t happen to embody all

the information available about future outcomes, this method would allow ft to fully reflect

that.14

One disadvantage of this method is that there remains some risk of overfitting. This

arises because we clean the forecasts after cross-validating, and so there may be spurious

reliance on the variables in the VAR. However, this is mitigated by the relatively short lag

length and limited specification of the baseline VAR. Moreover, this reflects a deeper issue,

that the well-known bias-variance tradeoff in forecasting means that our objective of not

overfitting is not always compatible with the identifying assumption in equation (5). Yet

our approach aims to limit the extent of this problem by using the machine learning forecasts

as a bottleneck, limiting information about future outcomes to the same dimension as the

data itself. Appendix D plots the cleaned forecasts and their associated time series.

14In robustness checks we also consider a case where we use the empirical forecasts without cleaning them.
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4.2 Estimation

In principle, implementing our method is straightforward: one needs only estimate a VAR

and then decompose the shocks in line with the method outlined in Section 3.4. In prac-

tice though, things are rather more difficult, with two interacting issues making accurate

estimation more challenging.

The first issue is that although ordinary least squares estimates for vector autoregressions

are consistent, they are biased in small samples. This is well-known (see Shaman and Stine

(1988) for an early discussion in the univariate context).15 To address this, we apply a bias-

correction approach based on the bootstrap proposed by Kilian (1998). A full description

of the algorithm is provided in Appendix C.1 but the basic idea is to approximate the bias

at the point estimate with the average bias in bootstrapped samples generated by the point

estimate. One can then adjust the point estimate to offset this bias. This gives reduced-form

coefficients B
(j)
1 , . . . , B

(j)
m ,Σ(j) for simulations j = 1, . . . , N . The variation in these reflects

sampling uncertainty under the null hypothesis that the point estimates are consistent.

This approach serves a double purpose since the bootstrap provides a large number of

simulated reduced-form coefficients. To compute confidence intervals for various statistics,

including structural impulse responses and a variance decomposition, we apply the identi-

fication process to each of the simulated reduced form estimates, using algorithm outlined

in Theorem 2. For each j = 1, . . . , N this gives estimates for the structural parameters

A(j), C(j), D
(j)
u , D

(j)
v .

The second issue is that the simulated structural matrices are only unique up to sign and

re-ordering of the shocks. For example, if shock number 1 in the point estimate A happens to

be a demand shock, there is no guarantee that the same shock is in column 1 of the simulated

estimate A(j). Depending on the ordering of components of the singular value decomposition,

a completely different shock may be ordered first. Moreover, because the identification relies

on a second-order statistic – the variance-covariance matrix – the identification is not unique

up to sign. Multiplying the same column in the A and C matrices by −1 gives the same

time series properties, just with the interpretation of what constitutes positive and negative

shocks reversed.

Thus for each simulation, we search over all possible combinations of re-orderings and

sign flips to find that which minimizes the square difference to the point estimates for the

structural impulse responses. With N = 6 variables, this is potentially very large, with 2N

15The intuition for this bias is that OLS “over-stabilizes” autoregressive models, pushing the estimated
eigenvalues away from the unit circle and towards stability. This results in a skewed distribution for the
estimator and can lead to estimates biased towards zero in small samples. Asymptotically, the bias shrinks
to zero in large samples, consistent with the central limit theorem.
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possible sign flips andN ! possible reorderings, giving 2N×N ! = 46, 080 possible combinations

in total. In Appendix C.2 we show how this can be reduced to a modified version of the

Quadratic Assignment Problem – a central problem in combinatorial optimization for which

there are well-understood and relatively swift solutions. This ordering procedure minimizes

a continuous loss function, satisfying the requirements for Lewis (2021) Theorem 4: our

labeling method does not affect the asymptotic distribution of the structural matrices (and

so neither the implied impulse response functions). We can thus use the sample of structural

parameters so created to calculate the distributions of model statistics as required.

The two issues outlined above also interact in potentially pernicious ways. Without

carefully bias-correcting the reduced form estimates, an incorrect ordering of the simulated

structural decompositions becomes more likely, causing much wider error bands.

The resulting distribution of estimates reflects a broad range of sources of uncertainty, not

always included in other approaches. Because we re-estimate the shock variance matrices

D
(j)
u , D

(j)
v for each simulation, our impulse responses show not just the uncertainty over

how a given shock propagates, but also that due to the uncertainty over the size of each

shock. This is particularly important when computing error bands for the decomposing the

variance of the time series data into that attributable to news versus surprises. Moreover,

sampling variation means that the reordering and re-signing of the shocks is imperfect –

variation due to one shock may be mistakenly attributed to another. By using estimated

residuals in the bootstrap, we also allow for non-normality of our estimates. And because we

apply the exact identification method to each reduced form simulation, we capture the full

extent of nonlinearity in the identification procedure (versus, for example, applying a linear

approximation such as the delta method). Finally, because our bootstrap technique matches

the observed sample length, we include variation appropriate to a small sample, and do not

rely on large-sample approximations.

We choose lag length via the Akaike Information Criterion. This selects fairly conclusively

a one-lag specification (see Figure 15 in Appendix K.2 for details). Although this might

seem a little short, this is not unexpected in the current setting. That is because the stacked

VAR that we estimate in equation (7) already includes rational forecasts of the next-period

outcome. These incorporate a large amount of information lagged outcomes relevant for

future outcomes. In addition, the data generating process here is VARMA, not a VAR. Given

that the MA component has an infinite autoregressive interpretation, this further shortens

the lag length, since the MA part can account for a considerable part of the persistence that

one might otherwise need several lags to capture. We consider alternative lag structures in

robustness checks.
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4.3 Impact of Surprises and Shock Labels

Our method recovers the structural shocks, but it does not tell us what they are. As usual in

the structural VAR literature, we devise a labeling scheme for the shocks, giving each shock

a name to help with interpretation. Our aim here is to be uncontroversial, giving names to

each of the shocks, aligned with commonly understood impacts of each shock’s effects on

multiple variables. As such, we base this on the signs of the impulse responses to surprises,

rather than news or a combination of the two. We do this because we think that responses

to unanticipated surprises are the most commonly studied and so arguably those for which

which readers are likely to have the strongest priors. Thus, by using the surprise impulse

responses as a means for attributing shock labels we hope to match generally-held views on

standard responses to structural shocks. In the interest of presenting the results swiftly, our

arguments for the shock labels are somewhat heuristic. In the next section we check that the

quantitative responses match those estimated elsewhere for the monetary and fiscal policy

shocks.

The responses to unanticipated surprises are shown in Figure 2, which we calculate as

described in Section 3.6. For all variables, the response is measured as the percentage

deviation from trend associated with a unit standard deviation structural shock.16 Dashed

lines show 10th and 90th percentiles of the bootstrapped distribution of outcomes.

The first shock we label “fiscal stimulus”. The shock features an immediate and statis-

tically significant contraction in government tax revenues and a prolonged and statistically

significant increase in government spending, albeit somewhat delayed. At the same time,

output and real activity (as measured by housing starts) increase with a lag. This we label as

a fiscal stimulus shock. In Section 4.4.1 we verify that the magnitude of the output response

is consistent with tax and spending multipliers in the literature. One slightly surprising

response is that the fiscal expansion induces a decline in inflation; Patel and Peralta-Alva

(2023) find the same pattern in a structural VAR identified with sign restrictions.

The second shock we label “monetary policy”, which features a clear, statistically sig-

nificant, and immediate increase in short term interest rates. This is followed by a decline

in output over the next year or so and then a subsequent reduction in inflation, although

not always strongly statistically significant. In Section 4.4.2 we again verify this shock, by

comparing to estimated monetary policy shocks in the literature.

The third and fourth shocks we label as demand and supply respectively. In the case

of the former, the output response is immediate and statistically significant, with a more

long-lasting increase in inflation and a delayed interest rate response. In contrast to the

16That is, impulse responses are scaled by the appropriate element of Du.
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fiscal shock, spending goes down and taxes go up, consistent with a aggregate expansion not

driven by the public sector. In the case of the latter, we base our labeling on the markedly

opposing responses of inflation and output on impact.

We leave the final two shocks unlabeled. This is not to say that one could not make

a case for a structural interpretation of either. In particular, the second unlabeled shock

appears much like our monetary policy shock. However, these shocks both fail some of the

quantitative validation tests below. And so we remain silent on the interpretation of these.
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Figure 2: Impulse Responses to Structural Shocks: Surprises

Impulse responses for a one standard deviation shock to the unanticipated surprise for each shock, as cal-
culated in Section 3.6. The solid line and dashed lines show respectively the 50th, 10th, and 90th percentiles
from a bootstrap simulation with Nsim = 1000 replications. For government consumption, output, and
taxes, units are percentage points relative to trend lagged output. For inflation, interest rates, and housing
starts, units are annualized percentage points relative to trend.

4.4 Validating the Shock Interpretations

In the preceding section, we assigned labels to the identified shocks based on the signs of

their effects. Can we be confident that what we label as “fiscal” and “monetary” actually
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capture these kinds of shocks? In this section we show that the impulse responses match

quantitatively those estimated elsewhere.

4.4.1 The Fiscal Policy Shock

To corroborate our interpretation of the first shock as fiscal policy, we show that the responses

are consistent with tax and spending multipliers estimated the literature.

Typically, the h−period fiscal multiplier in response to a fiscal policy shock is defined as

the ratio of the cumulative change in output relative to the cumulative change in the relevant

fiscal variable (either taxes or spending).17 That is, the multipliers are:

µh
G =

∑h
s=0 Et∆Yt+s∑h
s=0 Et∆Gt+s

µh
T =

∑h
s=0 Et∆Yt+s∑h
s=0 Et∆Tt+s

where Yt and Gt are output and government spending relative to trend GDP. An increase

in government spending over h periods totaling 1 percent of trend GDP thus leads to an

increase in cumulative output over the same period equivalent to µh
G percent of trend GDP.

As we estimate a more general fiscal shock, which includes both tax and spending changes,

we cannot compute these multipliers individually. However, we can do this exercise in reverse.

That is, taking as given estimates of multipliers from the literature, we can compute the

output response that would be implied by the tax and spending profiles. So for fixed values

of µh
T , µ

h
G we can compute:

µh
Y = µh

G

h∑
s=0

Et∆Gt+s + µh
T

h∑
s=0

Et∆Tt+s (10)

If we have identified a fiscal shock, and the multipliers estimated in the literature are

correct, then this quantity should be close to our cumulative estimated output response,∑h
s=0 Et∆Yt+s. This fact allows us to construct a test of whether of our fiscal shock labeling

is consistent with the estimates in the literature. We substitute values from several papers

for the tax and spending multipliers into equation (10) and replace the conditional expec-

tations for changes in tax and spending with out estimated impulse responses to compute

µh
Y at various horizons.18 Of course, satisfying this condition is not a sufficient criterion for

17Notable papers using this definition include Mountford and Uhlig (2009), Farhi and Werning (2016),
Hagedorn et al. (2019), and others mentioned in the main text. See Batini et al. (2014) or Ramey (2016) for
an overview. Other definitions of multipliers are sometimes used; for example, Blanchard and Perotti (2002)
measure the multiplier using the peak output response, while Leeper et al. (2017) use real interest rates to
discount future quantities.

18This is a benefit of scaling these variables relative to trend GDP prior to estimating our VARs (see
Section 4.1). It means that the impulse responses are already in the appropriate units.
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concluding that a shock is consistent with previously estimated fiscal multipliers. But it is

a necessary one – failing it rules out any reasonable interpretation of the shock as fiscal.

To begin our comparison, the most similar exercise is Lewis (2021), who also identifies the

entire set of structural shocks and must label fiscal shocks based on estimated IRFs. To this

we add results from three classic papers: Blanchard and Perotti (2002), Ramey (2016), and

Romer and Romer (2010).19 As the latter two estimate only spending and tax multipliers

separately, we combine them. To these, we add the well-known estimates of Caldara and

Kamps (2017) who use two approaches to estimate dynamic tax and spending multipliers.

We also consider two recent estimates of the spending multiplier – Ricco (2015) and Ben Zeev

and Pappa (2017) – again supplementing them with tax multipliers from Romer and Romer

(2010).

The individual points in Figure 3 the show the corresponding literature-consistent output

responses, µh
Y , for each of these estimates. This is compared to our estimated cumulative

output response, for the bootstrapped median (solid line) and confidence intervals (dashed

and dotted). The agreement with the Lewis (2021) estimates is remarkably close. Ex ante,

there is nothing which necessarily says that these should line up – the lines are our cumulative

output response, and the points are linear combinations of the tax and spending responses.

This close agreement suggests that is shock very similar to the fiscal shock identified by Lewis

(2021). The remaining estimates are generally a little larger than our estimates. The most

notable difference is compared to that using the Blanchard and Perotti (2002) multipliers,

for which the output response is substantially larger. This reflects the fact that they simply

find multipliers which are much larger than those measured in more recent work.

To some extent, differences with other estimates may reflect the different combinations

of news and surprise shocks. For us, a surprise is a shock that begins contemporaneous with

its announcement, and news is a shock that start one period after. Other estimates take

a slightly different approach. For example, in Ramey (2011) fiscal “news” about defense

spending could result in changes in expenditure at any number of different horizons.

Although this test cannot guarantee that our “Fiscal Stimulus” shock is fiscal, it at

least can rule out those which are not consistent with standard multipliers. Of course, it

could be that this is a particularly weak criterion – perhaps most or all shocks show a

similar consistency with estimated fiscal multipliers. To address this concern, Figure 16 in

Appendix K.3.1 repeats this exercise with all the other shocks. For three of the others –

the supply and demand shocks, and the second unlabeled shock – we can definitively reject

19Blanchard and Perotti (2002) and Romer and Romer (2010) do not report their estimates as cumulative
multipliers, so in order to compare with the other studies, we use the values re-estimated by Lewis (2021)
using Blanchard and Perotti’s method, and the multipliers re-estimated by Favero and Giavazzi (2012) using
Romer and Romer’s method.
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a fiscal interpretation based on extant multipliers. The monetary policy shock shows some

similarities to the estimated multipliers, although the fact that both government spending

and taxes respond statistically insignificantly at almost all horizons surely undermines any

possible fiscal interpretation. The cumulative output response for the first unlabeled shock,

however, is not wildly different from what would be consistent with standard multipliers,

suggesting that it may have some fiscal aspect. This is a point we return to in the variance

decomposition below.
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Figure 3: Cumulative output response, fiscal stimulus shock

The solid line is the median cumulative output response for an unanticipated epsilon fiscal expansion shock
from a bootstrap simulation with Nsim = 1000 replications. The dashed and dotted lines respectively are the
10th−90th and 25th−75th percentile ranges. The points show the cumulative output responses, µh

Y , implied
by our estimated tax and spending responses if the multipliers were those in the literature, summarized in
Appendix K.3.1.

4.4.2 The Monetary Policy Shock

Here we validate our claim that the second shock in Figure 2 can reasonably be interpreted

as a monetary policy shock. Our overall objective is to show that the shocks that we recover

are similar to those estimated elsewhere in the literature.

To assess whether estimated shocks have similar effects on macroeconomic variables as

ours, we use shocks from a set of classic papers as exogenous variables in a multi-variate

dynamic model (either a vector autoregression or a local projection) and compute the impact

on the same endogenous variables in our model. If these look qualitatively and quantitatively

similar to our impulse responses, then we can reasonably conclude that we have identified a

monetary shock (or at worst, something observationally equivalent).
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Specifically, we assemble the monetary shocks from five empirical papers which estimate

monetary policy shocks. All use some sort of high frequency identification approach, isolating

shocks to monetary policy from changes in measures of monetary policy around policy events,

such as FOMC meetings, policymakers speeches, and the like. The first, labelled “Bauer-

Swanson” is taken from Bauer and Swanson (2022) and is simply the change in Eurodollar

futures rates around both FOMC announcements and speeches by the Fed chair. This can

be thought of as a stand-in for a fairly large class of papers which use a similar approach,

of which perhaps the most well-known is Gertler and Karadi (2015). We supplement this

with an orthogonalized version of this shock, which purges predictable changes in the shock

reflected in asset prices. In addition to these, we use two papers by Romer & Romer.

One, Romer and Romer (2023) updates their classic 1988 paper on the narrative method

of identifying shocks, computed by close reading of official transcripts of FOMC meetings.

The other, Romer and Romer (2004) uses changes in Federal forecasts to remove predictable

changes in future outcomes.20 Finally, we also include Jarociński and Karadi (2020) who use

differential interest rate and stock price movements to separate the monetary surprise from

information about future outcomes. We aggregate the shocks at quarterly frequency. Table

2 summarizes the coverage of the various monetary shocks.

Shock Orig. Freq. Start End N
Bauer-Swanson M 1988-03-01 2019-12-01 128
Bauer-Swanson (orthogonalized) M 1988-03-01 2019-12-01 128
Jarocinski-Karadi, HFI from Fed Funds M 1990-03-01 2016-12-01 108
Romer-Romer 2023 Q 1969-03-01 2019-12-01 204
Romer-Romer 2004 (up to 2007) Q 1969-03-01 2007-12-01 156

Table 2: Monetary policy shocks in the literature

The reported impact of monetary policy shocks may differ for many reasons other than

fundamental differences in what is measured. One such reason is differences in specification

of the dynamic model used. And so to compare like with like we estimate the effects of

these shocks in a common framework. Our headline results use a one-lag VAR – the most

directly comparable to our specification – but in Appendix K.3.2 we also report results from

a longer-lagged VAR and from local projections.21

Another reason that impulses may differ across studies is that they capture shocks of

different magnitudes. As pointed out by Coibion (2012), the much larger response of macro

20We use the re-estimated version of this shock, extended to 2007 by Wieland and Yang (2020).
21For each monetary shock identified in the literature, we compute a vector autoregression using our

baseline data and the monetary shock. We then perform a Cholesky decomposition with the monetary shock
ordered first. This recovers the causal impact of the shock, using the VAR dynamics for propagation.
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variables to monetary shocks when measured by narrative methods can, to a considerable

extent, be explained by the magnitude of the shock. That is, narrative methods simply

capture a subset of particularly large monetary shocks. To address this we rescale the

impulse responses to have equivalently-sized interest rate responses. We consider two such

rescalings: one with an initial 100 basis point increase in interest rates, and one with a

cumulative 100 basis point increase in interest rates. The latter is our preferred measure as

it not only accounts for differences in both the size and duration of the monetary impulse,

but is also robust to slight differences in the very short-run dynamics of interest rates.
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Figure 4: Estimated IRFs to Monetary Shocks, comparison to the literature

Figure shows estimated impulse responses to a monetary policy shock from our baseline compared to those
computed from various sources in the literature. To match samples and specification, each line reports
the results from estimating a one-lag VAR with the same variables and coverage as our baseline model,
extended to including the shocks from the relevant source and where the impulse responses are computed
from a Cholesky decomposition with the monetary shock ordered first. The solid line labeled “Baseline” and
shaded area show respectively the median and 10th−90th percentile ranges from a bootstrap simulation with
Nsim = 1000 replications. To account for differences in the magnitude of estimated shocks, all impulses are
scaled such that the cumulative two-year interest rate impulse is 100 basis points.

Thus in Figure 4, we report the impulse responses to the five other sources as well as

our monetary shock response with two adjustments to guarantee comparability: a common

VAR framework and data (coverage aside); and rescaling to match the cumulative interest

rate response in the first 8 quarters. Overall, the results are both qualitatively and quanti-

tatively similar to ours. Given the interest rate shock which raises interest rates by about

20 basis points, output declines around 0.2 percent both for our shock and for those identi-

fied elsewhere in the literature. The timing of the output response is a little different, with
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generally longer lags on the shocks from previously-estimated shocks. However, this is not

entirely surprising given their slightly more backward-loaded impulse. For inflation, almost

all methods show a small positive liquidity effect in the short run and a decline at longer

horizons. And although our estimated effect on inflation is generally a little larger, most

other estimates are within the confidence interval and agree on a peak impact on inflation at

two to three years. The remaining variables, government consumption, taxes, and housing

starts broadly agree, although with some differences in dynamics. Variants on this, reported

in Appendix K.3.2, confirm that this finding is robust to changes in specification, estimation

method, and the normalization of the size of the shock.

Overall, the validation exercise for the monetary shock shows a notable consistency be-

tween our estimated monetary impulses and those considered standard in the literature.

This need not have been the case. Had it been wrongly labelled, our claimed monetary

could have been quantitatively very different to the responses computed using externally-

identified shocks. That it is not seems like reasonable validation of our interpretation.

4.5 The Impact of News

Having labeled and verified the labeling of our shocks, we can now compare news to surprise

shocks. We start in Figure 5 with the two policy shocks. For comparability across the news

and surprise impulses, we scale the news impulses by the standard deviation of the surprise.

This gives the plotted impulses a natural interpretation: that in period 1, it is revealed that

there will be a one standard deviation surprise shock in period 2. The news impulse therefore

combines both the anticipation of the policy change in period 2 and its realized impact. The

advantage of this rescaling is that it separates out the impact and anticipation effect of a

shock (the matrices A and C respectively) distinct from relative importance of news and

surprise shocks (captured by Du and Dv).

The overall impression from Figure 5 is that, as one might expect, an anticipated shock

has much the same effect as an unanticipated one in the long run – the impulses after more

than 10 or 12 quarters are much the same. However, in the short run some notable differences

arise. For the fiscal shock, taxes systematically jump up prior to an announced expansion,

implying that governments make an immediate grab for revenue in order to offset some of

their future largess. Interest rates fall persistently, consistent with a tighter fiscal position.

Despite stronger tax revenues, the output response to the news shock is similar, implying

slightly larger multipliers for pre-announced fiscal expansions than for surprise ones. And

although the anticipation effect for output is minimal, real activity as measured by housing

starts shows an immediate decline before rebounding, perhaps reflecting the possibility that
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Figure 5: Impulse Responses to Policy Shocks: News vs. Surprises

Impulse responses for unanticipated surprise and news for each shock, as calculated in Section 3.6. For
comparability, both shocks are scaled by the standard deviation of the surprise shock. The solid line and
dashed lines show respectively the 50th, 10th, and 90th percentiles from a bootstrap simulation with Nsim =
1000 replications. For government consumption, output, and taxes, units are percentage points relative to
trend lagged output. For inflation, interest rates, and housing starts, units are annualized percentage points
relative to trend.
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house builders hold off until the fiscal stimulus kicks in.

For the monetary policy shock, anticipation effects seem a little larger, although the news

shock is not as well estimated. An anticipated monetary tightening causes a small contem-

poraneous increase in interest rates, along with a temporary expansion in housing starts –

perhaps as interest-sensitive home builders engage in intertemporal substitution of produc-

tion. Inflation and output also drop much sooner than for an unanticipated shock, although

the confidence intervals around these estimates are large. However, the well known “liquidity

effect” – whereby activity and inflation increase temporarily on impact of a monetary policy

tightening – appears to be a feature only of surprises and not of news shocks.
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Figure 6: Impulse Responses to Economic Shocks: News vs. Surprises

Impulse responses for unanticipated surprise and news for each shock, as calculated in Section 3.6. For
comparability, both shocks are scaled by the standard deviation of the surprise shock. The solid line and
dashed lines show respectively the 50th, 10th, and 90th percentiles from a bootstrap simulation with Nsim =
1000 replications. For government consumption, output, and taxes, units are percentage points relative to
trend lagged output. For inflation, interest rates, and housing starts, units are annualized percentage points
relative to trend.

In Figure 6 we plot the same impulse responses for the supply and demand shocks.

Generally, the news component of the demand shock is very poorly estimated. This reflects

the fact that the news component is estimated to be very small (see further discussion of

the relative importance of news and surprises in the next section). As a result, we do not

offer a strong defense of the news impulse responses for the demand shock. For the supply

shock, however, we see a large and often countervailing anticipation effect. When expected

future supply increases, inflation spikes today, as one would expect if agents expect higher

31



future incomes without an immediate expansion in supply. As a result, the gains in output

and housing starts and the decline in interest rates are all much mitigated.

4.6 The Importance of News Versus Surprises in Macroeconomic

Fluctuations

In the preceding section, we compared the relative shapes of the news and surprise impulses,

rescaling them to abstract from differences in their size. Here, we reintroduce the magnitude

of the two different shock types, using this to investigate the relative contributions of news

and surprise shocks to aggregate macroeconomic fluctuations.22

To investigate this issue, we construct an explicit variance decomposition for all the

variables and shocks in our model. It is relatively straightforward to show that the h−step

ahead forecast error variance can be written as the sum of contributions from the news and

surprise components of each of the structural shocks. In Appendix G, we work out this

decomposition for the general case. But when M = 1, this becomes:

MSEtxt+h =
N∑
j=1

(
h∑

s=1

Bh−s(AjA
′
j)(B

′)h−s

)
σ2
u,j

+
N∑
j=1

(
h∑

s=1

1h>1B
h−s−1

(
AjA

′
j +B(CjA

′
j) + (AjC

′
j)B

′

+B(CjC
′
j)B

′) (B′)h−s−1 + (CjC
′
j)

)
σ2
v,j (11)

where Aj and Cj are the jth columns of matrices A and C respectively and 1h>1 is an

indicator function that is 1 if h > 1 and 0 otherwise. Note that because this is linear in the

variances of each of the news and surprise shocks (the σ2
u,j and σ

2
v,j), this can be interpreted as

an additive decomposition of the total variance with each term representing the contribution

from each shock.

Table 3 reports this variance decomposition for h = 24, a reasonable proxy for the

long-run decomposition. Overall, this comports with the results in Figure 11.23 For most

22To complement the quantitative results in this section, Appendix E describes the impulse responses to
structural shocks composed of the average combination of news and surprise.

23Some notes on interpreting this table: first, Jensen’s inequality implies that, the variance decomposition
of the mean of the distribution of estimates (i.e. the point estimate) is quite different from the mean of
the distribution of the variance decomposition. And so, the variance decomposition of the point estimate
is not a consistent estimator for the variance shares. We thus report an average over the bootstrap simula-
tion. Second, the relative news and surprise shares should correspond to the contributions to the average
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variables, both news and surprises play an important role. In general, news seems to account

for a smaller share of variance, although not a trivial one. For all but one variable, the news

shocks account for between one quarter and one fifth of the variance. This substantial role of

news is consistent with broad themes in the literature. Empirical studies of news following

Beaudry and Portier (2006) and Barsky and Sims (2011) broadly find large roles for news

to explain business cycles. These types of papers associate news with forecast errors about

technology; with our identification strategy, we can go further and find news associated with

the entire set of structural shocks.

One variable where news matters relatively more is inflation, where it accounts for almost

two fifths of fluctuations 6 years ahead. This is principally driven by news about supply –

consistent with the idea that inflation is driven by forward-looking agents responding to

changes in the balance between aggregate supply and demand.

The relative importance of news is not symmetric across shocks. The unweighted average

across variables gives a crude measure of the “newsiness” of each shock, and is shown in the

last three lines of Table 3.24 In general, fiscal shocks are the ones where news matters most

relative to surprises, likely reflecting the long lags in implementing fiscal policies.

Some variable-shock-specific points are also worth highlighting here. For example, mon-

etary policy shocks only drive a small amount of the variance in interest rates. Although

this might seem counter-intuitive at first, this is exactly what would occur if monetary pol-

icymakers generally adhere to a policy rule which responds to other shocks. This says that

monetary policy is not injecting noise into interest rates. The same is not true for fiscal

variables, which are predominantly driven by policy changes and, in the case of taxes, sup-

ply and demand. Housing starts, a particularly forward-looking measure of real activity, are

most affected by monetary policy, demand and fiscal shocks, as one might expect.

4.7 Robustness

Appendix K presents results from a number of different specifications, including with different

lag structures, different variables, different sample lengths, and dropping the forecast cleaning

step. Although the resulting shocks are not always directly comparable across specifications,

impulse responses in Figure 11. However, the quantitative relationship between Figure 11 and Table 3 is
not straightforward. The former shows the contemporaneous response per unit of shock standard deviation.
The latter shows the cumulative variance. For example, news is clearly much less important than surprises
for demand shocks in Figure 11, but quantitatively accounts for almost one sixth of the unweighted average
variance (2.9/18 ≃ 1/6). Nevertheless, the ordinal importance should almost always be preserved – if news
shocks appear more important in a given panel in Figure 11 they should generally have the greater share in
Table 3.

24This is not a perfect summary measure, since different variables have different variances. However, it is
at least transparent.
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Variable Type Fiscal stimulus Mon. policy Demand Supply Unlabeled #1 Unlabeled #2 Total
Gov. spending News 4.5 3.6 1.6 5.6 2.2 1.1 24.3

Surprise 20.4 10.0 3.8 2.3 14.8 12.3 75.7
Total 25.6 15.8 6.4 9.7 18.5 14.5 100.0

Output News 7.0 2.2 3.7 4.3 2.1 2.3 26.3
Surprise 8.0 6.7 19.5 23.9 4.6 4.3 73.7
Total 15.9 9.9 24.4 28.3 8.3 7.7 100.0

Taxes News 4.9 3.3 1.9 1.7 1.8 2.3 19.4
Surprise 12.5 4.7 11.6 30.3 7.6 7.4 80.6
Total 18.2 8.6 14.5 32.1 10.1 10.9 100.0

3-month interest rate News 5.6 2.2 3.7 5.8 2.1 2.3 25.9
Surprise 2.8 8.0 16.9 18.1 4.9 17.4 74.1
Total 9.2 11.2 22.5 24.8 8.1 20.0 100.0

Housing starts News 5.1 2.4 2.2 2.0 1.8 1.8 19.0
Surprise 13.8 18.4 17.7 8.3 6.0 9.6 81.0
Total 19.3 21.7 20.8 11.4 8.3 12.2 100.0

Inflation News 4.1 1.9 4.3 17.0 1.5 2.9 37.8
Surprise 5.2 4.0 12.6 21.9 2.4 7.0 62.2
Total 10.0 7.4 19.6 40.4 4.8 11.8 100.0

Unweighted average News 5.2 2.6 2.9 6.1 1.9 2.1 25.5
Surprise 10.5 8.6 13.7 17.5 6.7 9.7 74.5
Total 16.4 12.4 18.0 24.5 9.7 12.8 100.0

Table 3: Forecast error variance decomposition, 24 quarters ahead

The forecast error decomposition shows for each variable in percent the fraction of the overall forecast error
variance attributable to each shock, split into the news and surprise components. Totals are shown in the
right hand column. The news and surprise components sum to 100 for each variable. Table reports the
average from a bootstrap with Nsim = 1000 replications. The “Unweighted average” entries are a simple
average of the contributions across each variable, and thus give an approximate measure of the relative
contributions of news and surprises to macroeconomic fluctuations for each shock.

the role of news and surprises remains very similar to our baseline.

5 Counterfactual Policy

This section applies the McKay and Wolf (2023) method to study counterfactual policy

rules. The method requires estimates of the effects of policy news shocks. Because our

method identifies the entire set of news shocks, it is useful for comparing counterfactual

monetary and fiscal policy in a consistent setting. Moreover, this allows for the estimation

of counterfactuals where monetary and fiscal policy can coordinate.

5.1 Method

One of the key observations in McKay and Wolf (2023) is that in a world where news shocks

matter, policymakers are able to pursue their goals not just through their current actions

but also through news about their future actions. They exploit this insight to address

a long-standing critique of the usefulness of VARs for computing purely empirical policy

counterfactuals: that they are subject to the Lucas critique (Lucas, 1976).

34



For intuition, imagine that one were to able to perfectly identify the impact of a monetary

policy shock using a VAR and wanted to understand what would have happened if policy had

followed a different rule, one that perfectly stabilized inflation. One possibility, pioneered by

Sims and Zha (2006), would be to use the estimated impulse responses for inflation from the

monetary shock to compute the sequence of policy innovations which would have stabilized

inflation period-by-period. The challenge to this approach is that the policy realized ex

post is inconsistent with agents’ expectations. Thus, the estimated counterfactual impulse

response is wrong – if it were implemented as in such a way, rational agents’ expectations

would respond, changing the data generating process.

McKay and Wolf (2023) show that identification of news shocks is sufficient to overcome

this challenge in a relatively large class of commonly used macro models.25 The intuition is

that policymakers can implement a different rule not just through a surprise today but by also

communicating their future actions as news shocks. As a result, agents’ ex ante beliefs are

then consistent with the ex post policy rule. This in turn means that policy counterfactuals

can be estimated in three steps: 1) identifying news and surprise shocks, 2) compute the

linear combination of news and surprises which would implement the counterfactual policy,

3) use the estimated impulse responses to calculate the responses of the macroeconomy under

that rule.26 So far, this paper has been about the first of these steps. We now turn to the

remaining ones.

To apply this approach to our setting, we start by classifying our estimated shocks as

either policy shocks (the fiscal stimulus and monetary policy shocks) or as others (demand,

supply, and the unlabeled shocks). We then consider one-at-a-time the problem of the

policymakers in control of each policy shock, assuming that they wish to minimize some loss

function.

Specifically, assume that the policymaker controls both the surprise and the news for

shock g, denoted ugt and v
g
t . We denote the vectors of non-policy shocks by u−g

t and v−g
t . We

consider linear policy counterfactuals which can be written as:[
ugt

vgt

]
= α

[
u−g
t

v−g
t

]
(12)

25Barnichon and Mesters (2023) come to a similar Lucas critique-robust conclusion, but use the responses
to news shocks to solve the the time-t decision problem of a policymaker in contrast to constructing a
complete counterfactual.

26Strictly speaking, the Wolf & McKay result requires estimates of news shocks at all forecast horizons.
The exact number of news shocks depends on the lag structure of the true data generating process. But in
general, to perfectly implement an alternate policy rule, the econometrician may needs to know the news
shocks at all horizons. However, a key finding of McKay and Wolf (2023) is that using a single news shock
can be a good approximation to the true counterfactual.
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where α is a 2 × 2(n − 1) matrix recording how the policymaker responds to the other

structural shocks.

Let the impulse responses to surprise and news under this rule be denoted by ψu(h) and

ψv(h). Then: [
ψu(h) ψv(h)

]
=
[
ϕ−g
u (h) ϕ−g

v (h)
]
+
[
ϕg
u(h) ϕg

v(h)
]
α

We then assume that the policymaker aims to minimize a period loss function which

depends on a linear combination of the macroeconomic variables, xt:

min ||Fxt||

for some matrix F . This loss function could be a direct loss due to macroeconomic fluctua-

tions (e.g. departures from an inflation target) or it could be deviations from a specific policy

rule (e.g. a Taylor rule). In either case, we follow McKay and Wolf (2023) by computing α

to minimize this loss. A sufficient condition for this is to minimize the loss function on the

impulse responses, as these are just the building blocks of the linear model. We thus rewrite

the problem as:

min
∣∣∣∣∣∣F [ ψu(h) ψv(h)

]∣∣∣∣∣∣ = min
∣∣∣∣∣∣F [ ϕ−g

u (h) ϕ−g
v (h)

]
+ F

[
ϕg
u(h) ϕg

v(h)
]
α
∣∣∣∣∣∣

When the metric || · || is a sum of squares, this can be solved by estimating α from the

regression:

F
[
ϕ−g
u (h) ϕ−g

v (h)
]
= −F

[
ϕg
u(h) ϕg

v(h)
]
α + ϵh (13)

5.2 Counterfactual Exercises

In this section, we we compare and contrast how fiscal and monetary policy can be used for

business cycles stabilization.27 For each policy instrument, we select the linear combination

of news and surprise shocks that minimize the variance in one of three objectives: (1) output,

(2) inflation, and (3) a “dual mandate” weighted average. For each objective, this implies

a different policy response for each of the remaining 10 shocks (for each policy instrument

there are 5 remaining structural shocks, each with a news and noise component.) All of

these shocks affect the summary numbers that we report later in Table 4, but for readability

our plots only contain the counterfactual impulse responses to the non-policy “supply” and

“demand” structural shocks.

27Appendix F.2 presents additional counterfactual policies where the objective is passivity, e.g. acyclical
government spending and interest rate pegs.
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Figure 7: Counterfactual Business Cycle Stabilization Using Fiscal Policy

Time series impulse responses to news and surprise components of the two identified non-policy structural
shocks under four policy regimes computed following equation (13): the prevailing baseline rule, and then
the best feasible approximations to inflation stabilization, output stabilization, and a dual mandate which
weights inflation and output in inverse proportion to their standard deviations in the data.

Figure 7 plots the impulse response functions to demand and supply shocks when fiscal

policy is used to moderate business cycles.28 The red line (diamond markers) are the baseline

IRFs without any counterfactual policies. The purple line (cross markers) plots the IRFs

when fiscal policy is used to minimize detrended output variance. Fiscal policy is more

effective at moderating some shocks than others. For example, output expands after a

surprise supply shock in the baseline. When fiscal policy is used, nearly the entire output

response is eliminated. This is achieved by lower government spending and raising taxes after

the shock. Fiscal policy similarly effective at moderating the output response to demand

news, but is less effective at moderating demand surprises or supply news. This is because

these shocks have large, quickly decaying responses, while the baseline effects of fiscal shocks

on output are highly persistent (Figure 2). After these latter shocks, output responses are

mostly moderating in the medium-run, but only barely in the short-run.

28For readability, this figure only plots point estimates; we discuss and report confidence intervals in
Appendix F.1.
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The teal line (square markers) plots the IRFs when fiscal policy is used to minimize infla-

tion variance. In general, the slow passthrough of fiscal policies and the transitory response

of inflation to most shocks mean that inflation stabilization is achieved by centering infla-

tion fluctuations around zero, rather than successfully damping the short-term fluctuations.

Moreover, this comes at the cost of typically much larger swings in taxes and spending.

Overall, fiscal policy has to work very hard to offset inflation fluctuations and is not terribly

effective at doing so. This accords with the commonly-held belief that fiscal policy is not

an appropriate took to to offset inflation fluctuations. The “dual mandate” is the teal line

(triangle markers), which minimizes a weighted average of output and inflation objectives.

This produces policies and outcomes approximately halfway between the inflation targeting

and output stabilization cases.
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Figure 8: Counterfactual Business Cycle Stabilization Using Monetary Policy

Time series impulse responses to news and surprise components of the two identified non-policy structural
shocks under four policy regimes computed following equation (13): the prevailing baseline rule, and then
the best feasible approximations to inflation stabilization, output stabilization, and a dual mandate which
weights inflation and output in inverse proportion to their standard deviations in the data.

Figure 8 plots the impulse response functions to demand and supply shocks when mon-

etary policy is used to moderate business cycles. Monetary policy is effective at stabilizing
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the output response to two shocks: after a demand surprise, interest rates are immediately

raised to reduce the demand-induced output boom, at the cost of creating deflation; supply

news features a similar response with opposite sign. But other shocks are not moderated

well with monetary policy. In the baseline, supply surprises only create an output boom with

a long delay, so monetary policy is only effective at reducing medium-run output variance

with an immediate interest rate hike.

Monetary policy is more consistently effective at moderating inflation, where the sole

objective is to minimize the inflation variance. For example, demand surprises create imme-

diate inflation in the baseline, so the inflation-targeting policymaker responds by suddenly

hiking interest rates, pushing the inflation IRF nearly to zero. However, monetary policy is

not perfect for all shocks; supply news creates a short-term burst of inflation, which cannot

be easily moderated because monetary policy affects inflation smoothly and persistently.

The inflation targeting policymaker chooses to reduce the short-term burst only somewhat,

while tolerating some medium-run deflation.

Target: Inflation Output Dual Mandate

Policy used Fisc. Mon. Joint Fisc. Mon. Joint Fisc. Mon. Joint

Inflation 0.19 0.09 0.00 0.46 1.41 0.80 0.43 0.44 0.34
Output 1.03 1.45 1.56 0.30 0.33 0.01 0.56 0.58 0.37
Government spending 3.28 2.73 1.24 2.77 1.08 2.47 2.49 1.22 1.32
Taxes 4.56 2.22 3.06 5.15 2.09 3.91 6.02 1.43 1.72
3-month interest rate 1.22 0.84 2.02 1.06 1.15 2.12 1.69 0.82 0.43
Housing starts 1.85 1.09 1.09 0.92 1.06 0.89 0.80 0.68 0.25

Table 4: Counterfactual Variances Relative to Baseline

Table 4 shows the relative variance compared to the baseline of each of the model variables in nine counterfac-
tual simulations, as measured by the norm of the impulse response function. The counterfactual simulations
all seek to minimize the variance of some objective – either inflation, output, or a weighted average of both
(the “Dual Mandate” column, which weights inflation and output by their relative standard deviations).
They also vary by the policy instrument used – using either the fiscal shock, the monetary shock, or a
combination of both.

Table 4 extends this exercise, reporting the unconditional variances of the various time

series for each policy instrument and objective function, relative to baseline (i.e. the data).

It shows that fiscal and monetary policies are more effective when cooperating than either

one is individually. When output stabilization is the goal, fiscal or monetary policy alone

can reduce the output variance by about two thirds. But when both fiscal and monetary

policy are used, the output variance can be reduced to nearly zero. In some sense, this is not

surprising since joint policy allows for four degrees of freedom in stabilizing just one target.

Inflation is a similar story. Monetary policy is more effective than fiscal policy at moderating
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inflation, but together they can nearly eliminate inflation volatility.

Table 4 also reveals some further insight into variance trade-offs. Almost every counter-

factual policy increases the volatility of government spending and taxes. When used alone,

fiscal policy tends to increase interest rate volatility as well. When monetary policy aims

to moderate output, interest rate volatility rises, but when the goal is moderating inflation,

less interest rate volatility is needed. As such, the dual mandate exercise is perhaps a more

challenging and realistic test. Here, the benefits of coordination are less extreme, but still

more effective than either policy instrument is individually. The incremental reduction in

variance of joint policy is in the order of around an extra 50 percent for output and 20

percent for inflation.29

6 Conclusion

In this paper, we study a general structural VAR describing economies where agents have

news about the economy’s structural shocks. The effects of surprises and news shocks are

not easily disentangled with traditional methods. So we derived a new approach that incor-

porates measures of forecasts into the VAR, which identifies the entire vector of structural

surprises and news.

Our method is useful in any setting where there might be news about multiple shocks

in the economy. One such example is the case where agents have news about both fiscal

and monetary policy. We separately identify the the effects of these shocks, which allows us

to study how counterfactual fiscal and monetary coordination can coordinate to moderate

business cycles.

29For example, the improvement in output variance reduction for output relative to monetary policy alone
= (1− 0.58)/(1− 0.37) = 1.5
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A Additional Proofs Regarding the Structural Model

Lemma 1 The solution to the general model (3) is

xt =
k+1∑
j=1

βjxt−j + αut + γvt + (α− ργ) vt−1 (14)

with forecast

ft =
k+1∑
j=1

βjxt+1−j + (α− ργ) vt

where α ≡ −
∑∞

j=0 Ξ
j(Hz,0 +Hz,1Ry)R

j
y, γ ≡ Ξα−Hz,1Ky, ρ ≡ αRyα

−1, and

βj =


Φ1 − ρ j = 1

Φj − ρΦj−1 1 < j ≤ k

−ρΦk j = k + 1

Proof of Lemma 1. Rewrite the model as

0 = Et

[(
I − ΞL−1

)
zt +Hz,0yt +Hz,1yt+1

]
(15)

where zt ≡
(
I −

∑k
j=1 ΦjL

j
)
xt, Hz,0 ≡ Φ−1

0 Ψy,0, and Hz,1 ≡ Φ−1
0 Ψy,1. This implies

zt = −Hz,0yt −Hz,1Et [yt+1] + ΞEt [zt+1]

and Et [yt+1] = Ryyt +Kyvt implies

zt = −(Hz,0 +Hz,1Ry)yt −Hz,1Kyvt + ΞEt [zt+1]

= −Hz,1Kyvt − (Hz,0 +Hz,1Ry)yt − Et

[
∞∑
j=1

Ξj(Hz,0 +Hz,1Ry)yt+j

]

= −Hz,1Kyvt − (Hz,0 +Hz,1Ry)yt − Et

[
∞∑
j=1

Ξj(Hz,0 +Hz,1Ry)R
j−1
y yt+1

]

= −Hz,1Kyvt − (Hz,0 +Hz,1Ry)yt −

(
∞∑
j=1

Ξj(Hz,0 +Hz,1Ry)R
j−1
y

)
(Ryyt + vt)

= (−Hz,1Ky + Ξα) vt + αyt

using α = −
∑∞

j=0 Ξ
j(Hz,0 +Hz,1Ry)R

j
y. Then substituting for yt implies

= (−Hz,1Ky + Ξα) vt + α(I −RyL)
−1(ut + Lvt)
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Inverting α(I −RyL)
−1 gives

(I −RyL)α
−1zt = ut + Lvt + (I −RyL)α

−1 (Ξα−Hz,1Ky) vt

Use ρ = αRyα
−1:

(I − ρL)zt = αut + αLvt + (I − ρL) (Ξα−Hz,1Ky) vt

zt = ρLzt + αut + ((Ξα−Hz,1Ky) + (α− ρ (Ξα−Hz,1Ky))L) vt

Substitute back in with the definition of zt:(
I −

k∑
j=1

ΦjL
j

)
xt = ρ

(
I −

k∑
j=1

ΦjL
j

)
Lxt+αut+((Ξα−Hz,1Ky) + (α− ρ (Ξα−Hz,1Ky))L) vt

Adding
∑k

j=1 ΦjL
jxt to both sides gives the model solution:

xt =
k+1∑
j=1

βjxt−j + αut + γvt + (α− ργ) vt−1

using γ = Ξα−Hz,1Ky.
The forecast ft is given by the time t expectation:

Et[xt+1] =
k+1∑
j=1

βjxt+1−j + (α− ργ) vt

Proof of Theorem 1. Written in inclusive form, Ry = 0, so ρ = 0. Lemma 1 implies that
the solution simplifies to

xt =
k+1∑
j=1

βjxt−j + αut + γvt + αvt−1

and ϵt = ut + vt−1 implies

xt =
k+1∑
j=1

βjxt−j + αϵt + γvt

which matches the equation (1) form for βj = Bj, α = A, γ = C, and m = k + 1.
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B Forecast Cleaning Properties

B.1 Proof of Theorem 3

Proof. Equation (9) and the causal invertibility assumption imply that we can write the
rational expectation as

ft = Hf (L)−1f̃t−Hf (L)−1Hx(L)xt−Hf (L)−1Hz(L)zt−Hf (L)−1Hu(L)ut−Hf (L)−1Hv(L)vt

Lags of ut and vt can be written in terms of current and past rational forecasts and ob-
servables, per equation (7). Denote these representations with the invertible lag operator
polynomials ut =Mu

x (L)xt +Mu
f (L)ft and vt =M v

x (L)xt +M v
f (L)ft. The rational expecta-

tion becomes:

ft = Hf (L)−1f̃t−Hf (L)−1Hx(L)xt−Hf (L)−1Hz(L)zt−Mu
x (L)xt−Mu

f (L)ft−M v
x (L)xt−M v

f (L)ft

= (I+Mu
f (L)+M

v
f (L))

−1
(
Hf (L)−1f̃t − (Hf (L)−1Hx(L) +Mu

x (L) +M v
x (L))xt −Hf (L)−1Hz(L)zt

)
which we simplify by defining the causal lag operator polynomials ψf̃ , ψx, and ψz to collect
coefficients, allowing us to write the rational expectation as

ft = ψf̃ (L)f̃t + ψx(L)xt + ψz(L)zt (16)

Consider the relationship between xt+1 and the lagged observables:

xt+1 = ft + Aut+1 + Cvt+1

= ψf̃ (L)f̃t + ψx(L)xt + ψz(L)zt + Aut+1 + Cvt+1

ut+1 and vt+1 are orthogonal to current and past observables, so forecasting xt+1 by regressing
on lags of f̃t, xt, and zt recovers the rational expectation:

E[xt+1|{f̃t−j, xt−j, zt−j}∞j=0] = E[ft + Aut+1 + Cvt+1|{f̃t−j, xt−j, zt−j}∞j=0]

= E[ft|{f̃t−j, xt−j, zt−j}∞j=0]

which is given by equation (8).

B.2 Noisy Forecast Cleaning

When the conditions of Theorem 3 are not satisfied, the interpretation of our forecast cleaning
becomes weaker, but still useful.

Instead of an ideal rational expectation conditional on all information in available to
forecasters, our cleaned forecasts are the best unbiased forecasts given the observable time
series and reported forecasts. The interpretation of news must change as well. Instead of the
component of structural shocks that is anticipated by forecasters, news is now the component
that can be forecasted by the VAR.
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First, we modify equation (1) so that the structural VAR depends on expectations of fu-
ture shocks Et[ϵt+1] in general rather than the news component vt explicitly. This expectation
may include noise shocks or other confounders in addition to the structural vt:

xt =
m∑
j=1

Bjxt−j + Aϵt + CEt[ϵt+1]

Next modify equation (9) so that forecasts are now given by

f̃t = Hx(L)xt +Hz(L)zt +Hu(L)ut +Hv(L)vt +Hζ(L)ζt

Now the empirical forecasts f̃t are not deviations from some ideal rational expectation.
Rather, they are just some linear combination of observables, structural shocks, and the
noise shocks ζt.

The component of forecasts excluding the observable terms is

ξt ≡ Hu(L)ut +Hv(L)vt +Hζ(L)ζt

Let Hξ(L)wξ
t denote the Wold decomposition of ξt, with wξ

t white noise. Forecasting xt+1

gives the cleaned forecast:

ft = E[xt+1|Ω] =
m∑
j=1

Bjxt+1−j + AE[ϵt+1|Ω]

=
m∑
j=1

Bjxt+1−j + AE[ϵt+1|{ξt−j}∞j=0] =
m∑
j=1

Bjxt+1−j + AE[ϵt+1|wξ
t ]

so we define our reduced form news ṽt as

ṽt ≡ E[ϵt+1|wξ
t ]

= DvH
v
0
′Σ−1

wξw
ξ
t

where Hv
0 is the contemporaneous coefficient matrix in the Hv(L) polynomial.

ṽt enters the structural VAR in the same way as the true news shock vt. So when
can we identify it using the method derived in Section 3? When the dimensions of ṽt are
orthogonal, i.e. when Hv

0
′Σ−1

wξ is diagonal. What does this mean? The fundamental shock
ϵit+1 to dimension i is associated one-for-one with a noise shock ζ it to that dimension. Noise
shocks to different dimensions cannot co-vary.

Does this imply agents cannot receive signals about different fundamentals with correlated
noise? No. For example, GDP can still be a noisy signal about both productivity and labor
supply. Rather, the condition requires that the noise shocks can be separated into orthogonal
noise for each fundamental shock. News-noise equivalence (Chahrour and Jurado, 2018)
implies that this condition is equivalent to the structural assumption that news shocks are
mutually orthogonal.
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Online Appendix

C Computational details

C.1 Computing Impulse Responses

Denote the data by [FX], where F = (f1, f2, . . . , fT )
′ is the the set of forecasts and X =

(x1, x2, . . . , xT )
′ the non-forecast data. To compute the impulse responses we conduct the

following steps.

1. Calculate and initial reduced-form point estimate B̃pt, Σ̃pt from a restricted VAR using
the specification in equation (7), and where Σpt is the variance-covariance matrix of
residuals.

2. Simulate Nsim samples of the data using estimates B̃, Σ̃. Call these {[F̃n, X̃n]}Nsim
n=1 .

3. Apply the same estimation process as in step 1 to each of the data sets simulated in
step 2. Call the resulting estimates {B̃sim,n, Σ̃sim,n}Nsim

n=1

4. Define the mean simulated coefficient as:

B̃sim,avg. =
1

Nsim

Nsim∑
n=1

˜̃Bsim,n

Approximate the mean bias in the reduced-form estimates of B via:

Φ = B̃pt − B̃sim,avg.

5. Following Kilian (1998), we can define the bias-corrected reduced form point estimate
as:

B̂pt = B̃pt + Φ

6. The corresponding reduced-form errors for the point estimate are then the residuals
given by:

Ê = [FX]−1 − [FX]−T B̂pt

Where M−k means removing the kth row from matrix M . Then we can compute the
point estimate of the reduced form variance-covariance matrix from

Σ̂pt =
1

T
Ê ′Ê

7. Use the bias-corrected reduced form point estimate to construct Nsim samples of the
data using estimates B̂pt, Σ̂pt. Call these {[F̂n, X̂n]}Nsim

n=1 . This is a bias-corrected boot-
strap of the true data generating process.
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8. Compute a bias-corrected bootstrap of the reduced-form coefficients in two steps.

i. Apply same estimation process as in step 1 to each of the data sets {[F̂n, X̂n]}Nsim
n=1 .

Denote these estimates {B̄sim,n}Nsim
n=1

ii. Bias-correct these estimates to get the final bootstrapped estimates

B̂sim,n = B̄sim,n + Φ ∀ n

9. Compute the set of bootstrapped variance-covariance estimators {Σ̂sim,n}Nsim
n=1 using

the residuals computed from the simulated data {[F̂n, X̂n]}Nsim
n=1 via the method in step

6.

10. To get a point estimate and distribution of structural parameters, simply apply the
algorithm in Theorem 2 to B̂, Σ̂ and each element of {(B̂sim,n, Σ̂sim,n)}Nsim

n=1 .

11. To compute confidence intervals for a given impulse response, compute the structural
impulse separately for each element of the bootstrap (see next section for elaboration
og this step). To form confidence intervals, take percentiles.

C.2 Labelling Shocks in the Bootstrap

Computing the bootstrapped impulse responses (final step in the preceding section) is not
trivial. To see why, let ϕpt

x (h) denote a structural impulse response at horizon h for type x
(either news or surprise) computed using the point estimate. This is an N×N matrix, where
the columns correspond to the structural shocks and the rows correspond to the different
series in the data. Let ϕn

x(h) be the equivalent object for the nth bootstrapped simulation.
Identification is unique only up to sign and ordering of the shocks. This means that,

without further restrictions, we cannot distinguish between ϕn
x(h) and

ϕ̃n
x(h) = DPϕn

x(h)

where P is a N ×N permutation matrix and D is a N ×N diagonal matrix D with entries
1 and −1.

To address this issue, for each n re-order and re-sign the shocks by computing D∗, P ∗ to
minimize the sum of squares of the deviation of the bootstrapped impulse response from the
point estimate:

(D∗, P ∗) = arg min
D∈D,P∈P

H∑
h=1

∥ϕpt
x (h)−DPϕn

x(h)∥2

Where D and P are the sets of all possible D and P , and ∥ · ∥2 is the entry-wise sum
of squares. This ordering procedure minimizes a continuous function of the underlying
structural parameters, and so satisfies the requirements for Lewis (2021) Theorem 4.

On the face of it, this is not a straightforward problem. There are 2N possible D matrices,
and N ! possible P matrices. However, a related problem is has a well-understood solution:
the quadratic assignment problem. There, one seeks to minimize the assign N objects to N
locations, where the cost of assigning object i to location j is phi(i, j). Given a re-signing
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of the shocks, D, the problem at hand can be cast in this form. Because the metric we
use is additively separable, one simply needs to compute the loss from assigning shock j to
position i for all i and j. This is only N2 calculations, rather than N !, greatly saving time
over a brute force method. Of course, one still needs to solve the assignment problem given
the cost matrix, but efficient algorithms are readily available.

Of course, we still have the D matrix to worry about. One possibility is to solve the
quadratic assignment problem for all possible D. But this still requires 2N applications of
the solution algorithm. Much more efficient is to include this step in the calculation of the
cost matrix.

For any i ∈ 1, . . . , N , and any j ∈ 1, . . . , N , and any d ∈ {0, 1} we define a the function:

ψ(i, j, d) =
H∑

h=1

∥ϕn
x(i)(h)− (−1)dϕn

x(j)(h)∥2

That is, this is the component of the objective function above coming from assigning shock
j to position i given a resigning of shock j. Additive separability again means we can just
consider the re-signing of for each combination individually.

ψ(i, j) = min(ψ(i, j, 0), ψ(i, j, 1))

Thus, we need only make 2N2 calculations to compute a cost matrix which is then passed
to a solver for the quadratic assignment problem.

D Time series Plots of Data and Shocks

Figure 9 plots the detrended and deseasonalized time series in the baseline specification and
their associated forecasts.

Figure 10 presents the time series of the estimated shocks. In line with the variance
decomposition, the variance of the news shock relatively is larger for the fiscal stimulus and
supply shocks. The time series profile also admits an interpretation of specific episodes. One
such example is the Global Financial crisis of 2008-2009. This is one of the few episodes
where the news and surprised components of the monetary policy shock are of similar mag-
nitudes (the standard deviation of the news component is around half that of the surprise
for monetary policy). This is consistent with the idea that the Federal reserve started using
more explicit guidance about future interest rates as a tool of monetary policy.

E Effects of Average Structural Shocks

In general, structural shocks are combinations of news and surprises. The extent to which a
given structural shock is more driven by news versus surprise varies across shocks, depending
not only on the relative variances of news and noise (as captured by the differences in Du and
Dv) but also their differing causal impacts (the A and C matrices). One way to portray these
differences is by constructing “average” impulse responses. Shown in Figure 11, these capture
the dynamic response of macroeconomic variables to an average structural shock without
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Figure 9: Baseline Time Series and Forecasts

The solid red line plots our baseline time series. Government spending, output, and federal taxes are real,
deflated by the GDP deflator, and expressed relative to a quadratic real GDP trend. Housing starts are
the natural log, and all data series are deseasonalized and detrended. The source of forecast data is the
SPF for all baseline series, except the Federal Reserve’s Greenbook is used for government spending before
1981:III, and for taxes, while the Treasury forecast is derived from the yield curve. Forecasts are cleaned to
be rational in sample.

regard for the news-surprise split.30 For example, if one were able to identify monetary
policy shocks without separating the news and surprise components, the result would be the
relevant response in Figure 11.

The fundamental shock ϵt = ut + vt−1 is the sum of the surprise and news components.
We calculate the IRF to a unit ϵt shock as the response to an average ϵt realization:

ϕϵ(h) = E[xt+h|ϵt = 1]

= E [E[xt+h|ut] + E[xt+h|vt−1]|ϵt = 1]

= E [ϕu(h)ut + ϕv(h+ 1)vt−1|ϵt = 1]

= ϕu(h)E [ut|ϵt = 1] + ϕv(h+ 1)E [vt−1|ϵt = 1]

= ϕu(h)D
2
u + ϕv(h+ 1)D2

v

where D2
u and D2

v are the diagonal matrices of shock variances.
Accordingly, for each shock i, a unit impulse to ϵit is the sum of a V ar(uit) impulse to uit

and a V ar(vit−1) impulse to vit−1. Because of the news timing, the impulse response to ϵt is
non-causal: it can affect time series in period t− 1. Correctly accounting for the timing, the

30More formally, they are an average of the news and surprise impulses, weighted by their respective
standard deviations (see formal discussion in Section 3.6).
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Figure 10: Time Series of Estimated Shocks

impulse response matrix is:

ϕϵ(h) = ϕu(h)D
2
u + ϕv(h+ 1)D2

v

=

{
CD2

v h = −1

Bh+1CD2
v +BhA(D2

u +D2
v) h ≥ 0

Figure 11 clearly shows that overall news shocks seem perhaps less important than sur-
prises in driving macroeconomic fluctuations, although this varies considerably across differ-
ent shocks. For instance, supply and demand shocks are driven more by news and surprises
respectively. This accords with the common view of demand shocks as relatively fast-moving
and harder to predict and supply shocks as slower-moving. Likewise, fiscal policy appears on
average a larger surprise component than monetary policy, for which surprises seem generally
to be more important.

The relative importance of news and surprise shocks also varies across variables and
horizons, albeit to a lesser extent. In particular, news is generally a more important driven
of inflation especially at short horizons. In contrast, taxes seem to in general be more
dependent on surprise shocks.
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Figure 11: Impulse Responses to Structural Shocks: Average of News and Surprise Compo-
nents

The impulse response functions are plotted to an average unit structural shock, calculated as in Section
3.6. The dark and light gray bars capture the relative contribution of news and surprises respectively. For
government consumption, output, and taxes, units are percentage points relative to trend lagged output. For
inflation, interest rates, and housing starts, units are annualized percentage points relative to own-variable
trend.

F Additional Counterfactual Policy Results

F.1 Confidence Intervals

Our main results in Section 5 reported the point estimates for the IRFs under counterfactual
policies. It is also possible to construct confidence intervals. McKay and Wolf (2023) do so
in the process of estimating their Bayesian VARs. Our VAR is not Bayesian, so we take a
different approach

To give a sense of the statistical importance of our counterfactual estimates, Figure 12
plots percentiles from the distribution of counterfactual impulse responses for one example,
where fiscal policy is used to stabilize output. Here, the bootstrapped counterfactual impulses
are computed by applying the counterfactual policy for the median structural estimate to the
bootstrapped impulse responses. The interpretation of this is that it captures the uncertainty
a policymaker has if they choose to implement a single optimal policy program when they
have uncertainty about the true economy given by the confidence intervals in Figure 6.31 In

31The alternative – re-estimating the optimal policy for each simulation in the bootstrap – has no similarly
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almost all periods, counterfactual output remains inside the estimated confidence interval.
This is a measure of the extent to which the optimal policy regime successfully hits its
target. The confidence intervals also have an economic value. For example, they say at short
horizons one should be be relatively more confident in the immediate tax raises needed to
stabilize output than of cuts to government spending. At longer horizons, this is reversed.
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Figure 12: Counterfactual Business Cycle Stabilization Using Fiscal Policy: Output Stabi-
lization

Time series impulse responses to news and surprise components of the two identified non-policy structural
shocks under a dual mandate which weights inflation and output in inverse proportion to their standard
deviations in the data. The blue line shows the baseline responses. Solid and dashed black lines show the
50th, 10th, and 90th percentiles respectively from a bootstrap simulation with Nsim = 1000 replications

F.2 Passive Policies

In addition to the objective-maximizing policies, we can also study other alternative policy
rules. In this section, we consider counterfactuals where the policy instruments are as fixed
as possible. Figure 13 plots these impulse responses.

clean interpretation. It corresponds to a thought experiment in which a policymaker is subject to uncertainty
over the economy’s data generating process but simultaneously somehow sees through it to reset their optimal
policy for any given the draw from the estimated distribution of parameters.
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Figure 13: Passive government policies

Time series impulse responses to news and surprise components of the two identified non-policy structural
shocks under four policy regimes computed following equation (13): the prevailing baseline rule, and then
the best feasible approximations to an interest rate per, fixed taxes, and fixed government spending.

When government spending is as passive as possible (green line with triangle markers)
output is substantially more volatile, with larger IRFs to demand and supply shocks in
Figure 13. This suggests that the current government spending behavior is already playing
a role to moderate business cycles. Taxes are predictably similar: when tax revenues are as
acyclical as possible (teal line with square markers), output IRFs are also amplified.

When attempting to approximate passive interest rates, we come to a similar conclusion
as McKay and Wolf (2023): it is difficult to construct a policy counterfactual where interest
rates are passive. The interest rate volatility-minimizing counterfactual (purple line, cross
markers) only modestly reduces interest rate responses to shocks, although it also amplifies
output responses suggesting that current monetary policy is effectively reducing some output
volatility. This inability to achieve a passive interest rate counterfactual may be due to
the news/surprise structure of our time series, or it may be reflecting more fundamental
properties of the macroeconomy.
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G Variance Decomposition Derivation

Restating equation (1)

xt =
m∑
j=1

Bjxt−j + Aϵt + Cvt

=
m∑
j=1

Bjxt−j + Aut + Avt−1 + Cvt

Letting Xt be the appropriately stacked vector of m lags of xt. Then:

Xt = B̂Xt−1 + Âut + Âvt−1 + Ĉvt

Where B̂ concatenates the Bj and adds the lag matrix at the bottom, and Â and Ĉ add a
bunch of zeros in the extra rows.

Then the h−period forecast error is:

Xt+h − EtXt+h =

{
Âut+1 + Ĉvt+1 h = 1∑h

s=1 B̂
h−sÂut+s +

∑h−1
s=1 B̂

h−s−1
(
Â+ B̂Ĉ

)
vt+h + Ĉvt+h h > 1

And the corresponding error variance for the forecast is:

MSEtXt+h =


ÂDu(Â)

′ + ĈDv(Ĉ)
′ h = 1∑h

s=1 B̂
h−sÂD2

uÂ
′(B̂′)h−s

+
∑h−1

s=1 B̂
h−s−1

(
Â+ B̂Ĉ

)
D2

v

(
Â+ B̂Ĉ

)′
(B̂′)h−s + ĈD2

vĈ
′ h > 1

And the hs-period-ahead variance due to the jth shock has contemporaneous and news
components given by:

Surprise = σ2
u,j

h∑
s=1

B̂h−s(ÂjÂ
′
j)(B̂

′)h−s

News =


σ2
v,j(ĈjĈ

′
j)

′ h = 1

σ2
v,j(ĈjĈ

′
j)

+
∑h

s=1 B̂
h−s−1

(
ÂjÂ

′
j + B̂(ĈjÂ

′
j) + (ÂjĈ

′
j)B̂

′ + B̂(ĈjĈ
′
j)B̂

′
)
(B̂′)h−s−1 h > 1

Where Âj etc. are the jth column of the corresponding matrix
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H Additional News Horizons

Our baseline method considers 1-period-ahead news. But sometimes shocks are anticipated
even further in advance. In this appendix, we describe how to generalize our method to
account for news at multiple horizons by including additional forecasts in the VAR.

We define some new notation decomposing structural shocks into their anticipated com-
ponents over many horizons, similar to McKay and Wolf (2023):

ϵt = νt|t + νt|t−1 + νt|t−2 + ...+ νt|t−H

The shock vector ϵt depends on news shocks νt|t−j received at each horizon j in the past, up to
H total horizons. Mapping to our original one-period-ahead notation, the first two horizons
of news were written as νt|t = ut and νt|t−1 = vt−1. As before, we normalize the structural
shocks ϵt to have unit variance: V ar(ϵt) = I. Each structural shock is independent, so the
news components are orthogonal: V ar(νt|t−h) = D2

h, where Dh is diagonal. Orthogonality
over time implies

H∑
h

D2
h = I (17)

We return to the general macroeconomic model to derive the implied restrictions for news
at multiple horizons. The model (4) is

0 = Et

[
Φ0

(
I − ΞL−1

)(
I −

k∑
j=1

ΦjL
j

)
xt +Ψy,0yt +Ψy,1yt+1

]

yt = Ryyt−1 + ϵt

We will rewrite this model by stacking lagged variables into a single vector x⃗t ≡

 xt
xt−1

...

.

Additionally, we assume that the model is written in inclusive form so that Ψy,1 = 0 and
Ry = 0. In this case, the macroeconomic model becomes

0 =


Φ0 −Φ1 −Φ2 ...
I 0 0 ...
0 I 0 ...
. . .

. . .
. . .

. . .

 x⃗t +


Ψy,0

0
0
...

 yt +


−Φ0Ξ ΞΦ1 ΞΦ2 ...

0 I 0 ...
0 0 I ...
. . .

. . .
. . .

. . .

Et[x⃗t+1]

Inverting and rearranging gives the form

x⃗t = Ayt +BEt[x⃗t+1] (18)

which closely resembles the general model studied in Sims (2002).
In our baseline method, we rewrote the model as a VAR, and proceeded to identify the

model matrices from the VAR estimates. However, with multiple news horizons, the VAR

60



representation becomes unwieldy, in particular the error variance matrix. So instead, we
describe a method estimated by running several independent equations. This is also helpful
for determining what works and what fails when the horizon length is incorrectly specified.

We first introduce some new notation. Write the forecast vector as f⃗t = Et[x⃗t+1], noting
that the dimensions corresponding to lagged values are forecasted perfectly. Similarly, let
f⃗h
t = Et[x⃗t+h] denote h-period-ahead forecast (with f⃗ 0

t = x⃗t). And let fh denote the forecast

update f⃗h
t − f⃗h+1

t−1 orthogonalized with respect to f⃗h+1
t − f⃗h+2

t−1 . Only n (the dimension ϵt)
entries in fht and Aνt+h|t are non-zero, because lagged variables are forecasted perfectly, so

lastly let f̃ht denote the non-zero entries, and let Ã denote the n× n sub-matrix of A whose
rows are associated with the non-zero entries.

Theorem 4 If Ã and D2
h are full rank for all h, and neither Ã nor D2

h have repeated singular
values, then these matrices as well as B are identified from the time series {f̃ht }Hh=0.

Proof. Taking h-period ahead expectations, the model (18) becomes

Et[x⃗t+h] = AEt[yt+h] +BEt[x⃗t+h+1]

subtracting the t − 1 forecasts k + 1 periods ahead gives the relationship between forecast
updates:

f⃗h
t − f⃗h+1

t−1 = Aνt+h|t +BEt[f⃗
h+1
t − f⃗h+2

t−1 ] (19)

where the inclusive form assumption allows the forecast update on yt+h to be written as
Et[yt+h]− Et−1[yt+h] = νt+h|t.

This implies the orthogonalized forecast update f̃ht is linear in the horizon h news shock
alone:

fht = Aνt+h|t

and the non-zero entries are given by

f̃ht = Ãνt+h|t (20)

The variance matrix of this orthogonalized forecast update is

V ar(f̃ht ) = ÃD2
hÃ

′ (21)

which isolates the effect of horizon h news shocks. In the h = 0 case, this is the effect of
surprise shocks (and corresponds to the ψ expression in the baseline approach.)

Equations (17) and (21) imply

ÃÃ′ =
H∑

h=0

V ar(f̃ht )

Let UΛV∗ = Ã denote the SVD of Ã. Then, the SVD of ÃÃ′ is given by

UΛ2U∗ =
H∑

h=0

V ar(f̃ht )
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With U and Λ recovered, V ar(f̃ht ) can be transformed thusly:

Λ−1U∗V ar(f̃ht )UΛ−1 = V∗D2
hV

and the SVD of this matrix recovers V and D2
h. The SVD of a real matrix is only unique

up to sign and order, so this is true of the estimates as well.
Finally, matrix B is identified by OLS from equation (18), because νt+h|t ⊥ (f⃗h+1

t − f⃗h+2
t−1 )

This equation-by-equation result corresponds to the baseline method (Theorem 2) in the
case where there is a single news horizon: A corresponds to Ã, and C corresponds to the
non-zero sub-matrix in BA.

How are estimates affected if the correct news length H is not used? Immediate effects
of shocks may not be correctly estimated. To see why, suppose that the econometrician only
uses horizons up to H ′ < H. The SVD of

∑H′

h=0 V ar(f̃
h
t ) will not recover the true U of Λ

associated with Ã:
H′∑
h=0

V ar(f̃ht ) = Ã

(
H′∑
h=0

D2
h

)
Ã′

Denote the interior sum by D2
H′ ≡

∑H′

h=0D
2
h, a diagonal matrix. The SVD of Ã implies

H′∑
h=0

V ar(f̃ht ) = UΛV∗D2
H′VΛU∗

ΛV∗D2
H′VΛ is not generally diagonal; the SVD of this matrix will not correctly recover U.

But fortunately, choosing the correct horizon H is not necessary for conducting variance
decomposition! The variance decomposition measures how much of the conditional variance
of xt is due to different shocks. For dimension i in xt, the conditional variance is given by

V art(x
i
t) = V ar(xit − f i

t−1)

This variance is equal to the sum of conditional variances for each contemporaneous shock
vector:

=
H∑

h=0

V ar(xit − f i
t−1|νt+h|t)

thus the share χk
i of variation in dimension i that is due to contemporaneous news of horizon

k is given by

χk
i =

V ar(xit − f i
t−1|νt+k|t)∑H

h=0 V ar(x
i
t − f i

t−1|νt+h|t)

Theorem 5 The contemporaneous variance share χk
i is consistently estimated using hori-

zons up to H ′ > k, even if H ′ ̸= H.
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Proof. The true contemporaneous variance share is given by

χk
i =

V ar(xit − f i
t−1|νt+k|t)∑H

h=0 V ar(x
i
t − f i

t−1|νt+h|t)

=
V ar(xit − f i

t−1|fkt )
V ar(xit − f i

t−1)

which is implied by equation (20) and the invertibility of Ã. The denominator is always
consistently estimated in this setting. And the numerator is consistently estimated by OLS
from the orthogonalized forecast update fkt so long as k < H ′.

Theorem 5 implies that the variance decomposition for across news horizons is consistent
(except for horizon H ′) even if not all news horizons are accounted for. This is because the
effects of news at all omitted horizons are loaded onto the final included horizon. For example,
in our baseline estimation, we use only surprises and a single news horizon. Theorem 5 says
that this will correctly identify the share of variance that is due to surprises. However, it
will attribute the share of variance due to news at all horizons to news at the single horizon.

I Measurement Error

A concern with using survey data on forecasts is that they may be contaminated with
measurement error. In this section, we describe how to adapt our method to account for the
possibility of measurement error.

The empirical forecast vector f̃t is given by

f̃t = ft + wt

where ft is the rational expectation and wt is classical measurement error (orthogonal to the
other time series xt and ft) with variance matrix W0. wt may be serially correlated, with
autocovariance matrix W1.

The presence of measurement error changes how to write the time series xt in terms of
past forecast data and shocks:

xt = ft−1 + Aut + Cvt

=⇒ xt = f̃t−1 + Aut + Cvt − wt−1 (22)

The expectations ft can similarly be rewritten

ft =
m∑
j=1

Bjxt+1−j + Avt

=⇒ f̃t =
m∑
j=1

Bjxt+1−j + Avt + wt (23)

We cannot stack these equations into a VAR in

(
f̃t
xt

)
as we did in equation (7), because
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wt−1 will show up in the error term. wt−1 is correlated with f̃t−1, so a stacked VAR will not
consistently estimate the Bj matrices. Fortunately, we can still do so using equation (23)
alone.

Collect the residuals from equations (23) and (22) into a vector:

(
Avt + wt

Aut + Cvt − wt−1

)
= Ã


vt
ut
wt

wt−1

 (24)

where

Ã ≡
(
A 0 I 0
C A 0 −I

)
The covariance matrix Σ̃ of the residual vector

(
Avt + wt

Aut + Cvt − wt−1

)
is

Σ̃ =

(
AD2

vA
′ +W0 AD2

vC
′ +W ′

1

CD2
vA

′ +W1 CD2
vC

′ + AD2
uA

′ +W0

)
The appearance of the measurement error variance matrices W0 and W1 means that our
baseline method cannot be applied directly.

But there is a fix. W0 can be estimated by:

−E
[
(xt − f̃t−1)f̃

′
t−1

]
= −E [(Aut + Cvt − wt−1)(ft−1 + wt−1)

′]

per equation (22). The orthogonality of wt−1 implies

= −E [(−wt−1)(wt−1)
′] = W0

Similarly, W1 can be estimated by

−E
[
(xt − f̃t−1)f̃

′
t−2

]
= −E [(Aut + Cvt − wt−1)(ft−2 + wt−2)

′]

= −E [(−wt−1)(wt−2)
′] = W1

With W identified, subtracting from the variance matrix Σ̃ gives

Σ̃−
(
W0 W ′

1

W1 W0

)
=

(
AD2

vA
′ AD2

vC
′

CD2
vA

′ CD2
vC

′ + AD2
uA

′

)
With this matrix, Theorem 2 can be applied (setting B1 = 0) to identify the matrices A, C,
Dv, and Du.

The crucial assumptions for this method were that the measurement error is classical,
and that absent the measurement error, forecasters would report the rational expectation.
This would be a poor assumption when applied to household forecasts – such as those
reported in the Michigan Survey – which display clear and persistent biases. However, the
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assumptions might be appropriate when applied to professional forecasters, who have strong
financial incentives for accuracy. Eva andWinkler (2023) find little evidence that professional
forecasters depart from rational expectations when appropriately testing their out-of-sample
forecasts.

J Hidden States

Our identification method requires that the structural model in equation (1) is the true data
generating process. But what if there are hidden states in the economy that do not appear
in the data? In this section, we generalize the method to allow for this possibility.

Again suppose that the state vector xt follows equation (1), but has some dimensions
that are not directly observed. Instead, the data vector yt is determined by the observation
equation

yt = xt +Gut +Gvt−1 +Hvt (25)

Without loss of generality, we can normalize the hidden states to obey equations (1) and
(25).

Observations are related to forecasts by

yt = ft−1 + (A+G)ut + (C +H)vt

while the forecasts ft = Et[yt+1] are now given by

ft = Et[xt+1] +Gvt =
m∑
j=1

Bjxt+1−j + (A+G)vt

=
m∑
j=1

Bj(yt+1−j −Gut+1−j −Gvt−j −Hvt+1−j) + (A+G)vt

= B1(yt −Gut −Gvt−1 −Hvt) +
m∑
j=2

Bj(yt+1−j −Gut+1−j −Gvt−j −Hvt+1−j) + (A+G)vt

= B1(ft−1 +Aut −Gvt−1 +Cvt) +
m∑
j=2

Bj(yt+1−j −Gut+1−j −Gvt−j −Hvt+1−j) + (A+G)vt

Stack the expectations and time series into a single VARMA(m− 1,m):(
ft
yt

)
=

m−1∑
j=1

Bj

(
ft−j

yt−j

)
+

m∑
j=0

Aj

(
vt−j

ut−j

)
(26)
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where (as before)

Bj ≡



(
B1 B2

I 0

)
j = 1(

0 Bj+1

0 0

)
j > 1

and

Aj ≡



(
B1C + A+G B1A

C +H A+G

)
j = 0(

−BjG−Bj+1H −Bj+1G

0 0

)
m > j > 0(

−BmG 0

0 0

)
j = m

As in the simple VAR case, the autoregressive terms identify the Bj matrices. But nowA0

has two additional matrices that thwart identification: G and H. Fortunately, the hidden
state structure introduces additional MA terms, which allow for possible identification of
G and H. We emphasize that with the structure, we only have sufficient conditions for
identification – at least as many linearly independent equations as unknowns – but not a
constructive proof analogous to Theorem 2. This is because our baseline method admits an
analytical solution to the decomposition of the variance matrix Σ, but we have found no such
analytical solution in this generalization, so estimation must use a numerical decomposition.

We use A1 to demonstrate identification, although these matrices are now potentially
overidentified, so we can use even more lags to improve the statistical power when estimating
G and H. The variance matrix of forecast errors is now

Σ0 = A0

(
D2

v 0
0 D2

u

)
A′

0

but with the MA structure, it is possible to identify the covariance matrix of any two MA
components, i.e.:

Σij = Ai

(
D2

v 0
0 D2

u

)
A′

j

To calculate the Ai matrices, subdivide the matrix Σjj ≡
(

Σj,11 Σj,12

Σj,21 Σj,22

)
into n × n

blocks. The off-diagonal submatrices satisfy Σj,12 = Σ′
j,21, so the remaining submatrices are

given by
Σ0,11 = (B1C + A+G)D2

v(B1C + A+G)′ +B1AD
2
uA

′B′
1

Σ0,21 = (C +H)D2
v(B1C + A+G)′ + (A+G)D2

uA
′B′

1

Σ0,22 = (C +H)D2
v(C +H)′ + (A+G)D2

u(A+G)′

which correspond to the three block matrix equations that we used to identify the original
VAR (Theorem 2). With two additional matrices to identify, use the covariance between
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MA terms:

Σ01 =

(
−(B1C + A+G)D2

v(B1G+B2H)′ −B1AD
2
uG

′B′
2 0

−(C +H)D2
v(B1G+B2H)′ − (A+G)D2

uG
′B′

2 0

)
Which, in addition to

D2
u +D2

v = I

is as many linear restrictions as unknowns.

K Robustness

This section reports the results from several robustness checks: alternatives to the baseline
specification (Section K.1), a discussion of lag length selection (Section K.2), and additional
shock validation exercises (Section K.3).
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Figure 14: Variance decomposition: Comparison across specifications

Figure shows the 24-quarter horizon variance decomposition for the baseline and six different specifications.
Points show 50th percentile and error bars the 10th to 90th percentile range from a bootstrap simulation
of 1000 draws. Only common variables are shown, so specifications which replace one variable with another
will be missing from one panel.
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K.1 Alternative Specifications

We consider six alternative specifications, spanning a wide range of possible ways that our
model might be mis-specified. These are listed in detail below. Two consider alternate lag
structures, with either 2 or 4 lags respectively. One checks the extent to which our creation
of proxy expectations series might be driving our results. Another re-runs our method using
a data sample from the post-Volcker disinflationary era. And the remaining two substitute
alternative measures of public spending and a secondary real activity measure.

Alternate specifications:

1. Baseline. The baseline specification in the text

2. 2 Lags. Baseline but with 2 lags in the VAR.

3. 4 Lags. Baseline but with 4 lags in the VAR.

4. Literal forecasts. Uses the collected forecasts without any machine learning or other
processing.

5. Short Sample Data starts in March 1988

6. Inc. Federal Spending. Replaces government spending with Federal Government
Spending,

7. Inc. Unemployment. Replaces housing starts with unemployment.

8. Inc. Industrial Production. Replaces housing starts with industrial production.

9. Inc. Oil prices. Replaces housing starts with oil prices.

Given the difficulty in comparing impulse responses across specifications, as our main
summary measure we take the variance in each variable attributable to news and surprise.
For the baseline specification this is the rightmost column shown in Table 3 and gives an
overall sense of how our method attributes fluctuations in variables to news and surprise
shocks. Figure 14 presents this measure for each of the variables in our core dataset and
for each of the specifications considered. Although there is some variation, the general
impression clearly shows that the split between news and surprise shocks in driving outcomes
is very stable across specifications. For almost all variables, a single value fits within the
confidence interval for all news shocks (likewise for surprises). Qualitatively, the picture
described in the main text is consistently produced here. Surprise shocks account for around
three quarters of the variance for most variables except inflation, where news plays a more
important role (and in some specifications, the dominant role).

K.2 Lag Selection

Figure 15 presents four ways to calculate the Akaike Information Criterion. They vary in
the set of residuals used to compute the likelihood and in the restrictions on the estimation
process. The “F-form“ uses a likelihood for the stacked VAR in equation (7). The “X-
form“ uses just the residuals from the errors on the non-forecast variables. For each form,
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Figure 15: Akaike Information Criterion

Figure shows four different ways of computing the Akaike information. See text for details

the likelihood is computed for two ways of estimating the reduced form coefficients. In the
“restricted“ case, the zero restrictions on the Bj matrices are imposed. In the “unrestricted“
case, they are not. These lines are equivalent for the X-form AIC because the restrictions do
not bind on the lower half of the stacked coefficient matrices – the estimation always puts
weight one on the forecasts. In all cases, the one-lag specification is strongly preferred.

K.3 Shock Validation Exercises

This section provides extra validation checks for our shock labelling.

K.3.1 Fiscal Shock

Table 5 lists the values of the multipliers we use and their sources.
Figure 16 reproduces the validation exercise in Figure 3 for the other shocks. In general,

the responses to the other shocks do not have implicit multipliers similar to those measured
in the literature. The only shock where this might appear to be the case is for the mon-
etary shock, although this is based on tax and spending responses which are statistically
indistinguishable from zero.

K.3.2 Monetary Shock

This section reports alternate version of the monetary shock validation in Section 4.4.2. The
following results are analogous to Figure 4: we estimate the impulse responses of our baseline
time series to a set of monetary policy shocks estimated in the literature, and compare the
estimates to our method’s monetary policy shock. Figure 17a re-scales the shocks to increase
the 3-month interest rate by 100 basis points (rather than the 2-year interest rate). Figure
17b adds additional lags to the VAR. In all cases, the effects of our monetary policy shock
are broadly consistent with the shocks estimated elsewhere.
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Supply shock Unlabeled shock #1 Unlabeled shock #2
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Figure 16: Cumulative Output Response: All Shocks

The solid line is the median cumulative output response for an unanticipated surprise fiscal expansion shock
from a bootstrap simulation with Nsim = 1000 replications. The dashed and dotted lines respectively are the
10th−90th and 25th−75th percentile ranges. The points show the cumulative output responses, µh

Y , implied
by our estimated tax and spending responses if the multipliers were those in the literature, summarized in
Appendix K.3.1.
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Source h 2 4 6 8 12 16 20
Lewis 2021 µh

G 0.56 0.57 0.57 0.64 0.76 0.87
µh
T 0.03 -0.09 -0.71 -1.33 -1.77 -2.06

Ramey 2011/Romer and Romer 2010 µh
G 1.20
µh
T -2.60

Ben Zeev and Pappa 2017/Romer and Romer 2010 µh
G 2.40
µh
T -1.25

Blanchard and Perotti 2002 µh
G 0.61 0.60 0.56 0.60 0.70 0.80
µh
T -0.64 -1.01 -2.28 -3.63 -4.69 -5.41

Caldara and Kamps 2017, penalty function µh
G 0.05 0.35 0.55 0.25
µh
T -1.05 -1.20 -0.80 -0.45

Ricco 2015/Romer and Romer 2010 µh
G 1.50
µh
T -2.60

Table 5: Tax and Spending Multipliers from the Literature

Table 5 shows the values of the tax and spending multipliers used to calculate µh
Y , the implied cumulative

output response from the tax and spending responses for the fiscal shock. Where a pair of papers is cited,
the former is used to calculate the spending multiplier, µh

G, and the latter the tax multiplier, µh
T . The

cumulative Blanchard and Perotti (2002) multipliers are those reported by Lewis (2021), and the cumulative
Romer and Romer (2010) multipliers are those reported by Favero and Giavazzi (2012).
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(b) Additional Lags

Figure 17: Estimated IRFs to Monetary Shocks: Additional VAR Specifications

Figure shows estimated impulse responses to a monetary policy shock from our baseline compared to those
computed from various sources in the literature. To match samples and specification, each line reports
the results from estimating a VAR with the same variables and coverage as our baseline model, extended to
including the shocks from the relevant source and where the impulse responses are computed from a Cholesky
decomposition with the monetary shock ordered first. The solid line labeled “Baseline” and shaded area show
respectively the median and 10th − 90th percentile ranges from a bootstrap simulation with Nsim = 1000
replications. To account for differences in the magnitude of estimated shocks, all impulses are scaled such
that the initial interest rate impulse is 100 basis points. In panel (a), this scaling is applied to the 3-month
rate rather than the 2-year rate as in other plots. In panel (b), the VAR is extended to include 4 lags.
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